Cargando…

Graphene-based electrochemical sensors for biomolecules /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Pandikumar, Alagarsamy (Editor ), Rameshkumar, Perumal (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Amsterdam, Netherlands : Elsevier, [2019]
Edición:First edition.
Colección:Micro & nano technologies.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Front Cover
  • Graphene-Based Electrochemical Sensors for Biomolecules
  • Copyright
  • Contents
  • Contributors
  • Preface
  • Acknowledgments
  • Chapter 1: Graphene-Modified Electrochemical Sensors
  • 1. Introduction
  • 2. Electrochemical Sensors
  • 3. Importance of Biomolecules
  • 4. Graphene
  • 4.1. Structure and Properties of Graphene
  • 4.2. Synthesis of Graphene
  • 4.2.1. Top-Down Methods
  • 4.2.2. Bottom-Up Approach
  • 5. Electrode Fabrications With Graphene
  • 6. Electrochemical Determination of Neurotransmitters, Vitamins, and Amino Acids
  • 7. Electrochemical Determination of Purine Derivatives
  • 7.1. Electrochemical Determination of UA, XN, and HXN
  • 7.2. Electrochemical Determination of DNA Purine Bases (A and G)
  • 7.3. Electrochemical Determination of Purine Nucleotides and Nucleosides
  • 7.4. Electrochemical Determination of CAF, TP, and AP
  • 8. Conclusion and Future Prospects
  • References
  • Chapter 2: Functionalized Graphene Nanocomposites for Electrochemical Sensors
  • 1. Introduction
  • 1.1. Functionalized Graphene Nanocomposites
  • 1.2. Electrochemical Detection of Biomolecules Using Functionalized Graphene Nanocomposites
  • 2. Detection of Nitric Oxide
  • 3. Detection of Glucose
  • 4. Sensing of Cholesterol
  • 5. Detection of Important Neurotransmitters
  • 6. Concluding Remarks and Future Prospects
  • References
  • Chapter 3: Doped-Graphene Modified Electrochemical Sensors
  • 1. Introduction
  • 2. Heteroatom-Doped Graphene
  • 2.1. Element Boron
  • 2.2. Element Nitrogen
  • 2.3. Element Phosphorus
  • 2.4. Element Sulfur
  • 3. Heteroatoms Doped Graphene for Electrochemical Sensor Applications
  • 3.1. Electrochemical Detection of Hydrogen Peroxide
  • 3.2. Electrochemical Detection of Dopamine
  • 3.3. Electrochemical Detection of NADH
  • 3.4. Electrochemical Detection of Glucose.
  • 3.5. Electrochemical Detection of Ascorbic Acid
  • 4. Conclusion and Future Outlooks
  • References
  • Chapter 4: Graphene-Metal Modified Electrochemical Sensors
  • 1. Introduction
  • 2. Synthesis of Graphene-Metal NP Hybrids
  • 2.1. Direct Mixing Method
  • 2.2. Electrodeposition Method
  • 2.3. Photochemical Method
  • 2.4. Substrate Enhance Electroless Deposition Method
  • 2.5. Chemical Reduction Method
  • 2.6. Microwave Assisted Synthesis Method
  • 2.7. Electrolytic Deposition Method for Synthesis of Graphene-Metal NP Hybrids
  • 3. Sensing Application of Graphene-Metal NP Hybrids
  • 3.1. Dopamine/Uric Acid/Ascorbic Acid Sensor
  • 3.2. Glucose Sensor
  • 3.3. Hydrogen Peroxide Sensor
  • 3.4. Immunological Sensor
  • 3.5. Epinephrine and Norepinephrine Sensor
  • 3.6. Levofloxacin Sensor
  • 3.7. Ethanol Sensor
  • 4. Conclusion
  • References
  • Further Reading
  • Chapter 5: Graphene-Metal Oxide Nanocomposite Modified Electrochemical Sensors
  • 1. Introduction
  • 2. Electrochemical Detection of Biomolecules
  • 2.1. Dopamine
  • 2.2. Glucose
  • 2.3. NADH and Cholesterol Sensing
  • 2.3.1. Nicotinamide Adenine Dinucleotide Hydrogen
  • 2.3.2. Cholesterol Detection
  • 3. Conclusion and Future Perspectives
  • References
  • Chapter 6: Graphene-Metal Chalcogenide Modified Electrochemical Sensors
  • 1. Introduction
  • 2. Electrochemical Sensing of Biomolecules Using Graphene-Metal Chalcogenide Composites
  • 3. Electrochemical Sensing of Biomolecules Based on Enzymatic and Nonenzymatic Approaches Using Graphene-Metal Chalcogeni ...
  • 4. Conclusion and Future Prospects
  • References
  • Chapter 7: Graphene-Polymer Modified Electrochemical Sensors
  • 1. Introduction
  • 2. Polymers
  • 2.1. Synthetic Polymers
  • 2.1.1. Polypyrrole
  • 2.1.2. Polyaniline
  • 2.1.3. Poly(3,4-ethylenedioxythiophene)
  • 2.1.4. Nafion
  • 2.2. Natural Polymers
  • 2.2.1. Chitosan.
  • 2.2.2. Cellulose
  • 3. Graphene-Conductive Polymer Hybrid Materials for Development of Electrochemical Sensors
  • 3.1. Graphene-Polypyrrole Hybrid Electrochemical Determination of Bioanalytes
  • 3.2. Graphene-Polyaniline Hybrid Electrochemical Determination of Bioanalytes
  • 3.3. Graphene-Poly(3,4-ethylenedioxythiophene) Hybrid Electrochemical Determination of Bioanalytes
  • 3.4. Graphene-Nafion Hybrid Electrochemical Determination of Bioanalytes
  • 4. Graphene-Biopolymer Hybrid Materials for Development of Electrochemical Sensors
  • 4.1. Graphene-Chitosan Hybrid Electrochemical Determination of Bioanalytes
  • 4.2. Graphene-Cellulose Hybrid Electrochemical Determination of Bioanalytes
  • 5. Conclusion and Future Prospects
  • References
  • Chapter 8: Graphene-Carbon Nanotubes Modified Electrochemical Sensors
  • 1. Introduction
  • 2. Use of Nanomaterials in Sensors
  • 3. Introduction to Graphene-Carbon Nanotube Composite Materials and Their Advantages
  • 4. Electrochemical Sensor Application Fields of Graphene-Carbon Nanotube Composites
  • 4.1. Biomolecule Sensors
  • 4.2. Pharmaceutical Sensors
  • 4.3. Food Sensors
  • 5. Conclusions and Perspectives
  • Acknowledgments
  • References
  • Chapter 9: Graphene-Carbon Nitride-Based Electrochemical Sensors for Biomolecules
  • 1. Introduction
  • 2. Synthesis of Materials
  • 2.1. Preparation of Carbon Nitride Nanomaterials
  • 2.2. Preparation of Graphene-Carbon Nitride-Based Nanocomposite Materials and Electrode Modification
  • 3. Characterization of Materials
  • 3.1. Brunauer-Emmett-Teller Surface Area and X-Ray Diffraction
  • 3.2. UV-Visible and Fluorescence Spectroscopy
  • 3.3. Fourier Transform Infrared Spectroscopy
  • 3.4. Raman Spectroscopy
  • 3.5. X-Ray Photoelectron Spectroscopy
  • 3.6. Transmission Electron Microscopy
  • 4. Electrochemical Behavior and Sensing Applications.
  • 5. Conclusions and Future Prospects
  • References
  • Chapter 10: Graphene-Clay-Based Hybrid Nanostructures for Electrochemical Sensors and Biosensors
  • 1. Introduction
  • 1.1. Electrochemical Sensors
  • 1.2. Advantages of Electrochemical Sensors
  • 1.3. Types of Carbon Nanomaterials
  • 1.3.1. Carbon Nanotubes
  • 1.3.2. Fullerene
  • 1.3.3. Graphene
  • 1.3.4. Reduced Graphene Oxide
  • 1.3.5. Graphene Nanoribbons
  • 1.4. Types of Clay Minerals
  • 1.4.1. Layered Double Hydroxides
  • 1.4.2. Montmorillonite
  • 1.4.3. Sepiolite
  • 1.4.4. Zeolites
  • 1.5. Graphenes in Sensors
  • 1.5.1. Graphene and Carbon Nanotubes Nanohybrid Sensors
  • 1.5.2. Graphene and Metal Oxide Nanohybrid Sensors
  • 1.5.3. Electrochemistry of Graphene
  • 1.5.4. Electrochemistry of Clay Particles
  • 1.5.5. Importance of Graphene and Clay Nanohybrid Electrodes for Sensor Applications
  • 2. Graphene-Clay Nanohybrid Based Electrochemical Sensors
  • 2.1. Types of Clay-Graphene Nanohybrid Synthesis
  • 2.2. Graphene-Clay Hybrid-Based Electrochemical Sensors
  • 2.3. Graphene-Clay Hybrid-Based Gas Sensors
  • 2.4. Graphene-Clay Hybrid-Based Biological Sensors (Glucose/H2O2)
  • 2.5. Other Graphene-Clay Hybrid-Based Biosensors
  • 3. Conclusion and Future Trends
  • References
  • Further Reading
  • Chapter 11: Graphene-Metal-Organic Framework-Modified Electrochemical Sensors
  • 1. Introduction
  • 2. Mechanism of Charge Transfer in Graphene-MOFs
  • 3. Fabrication of Graphene-MOF
  • 3.1. Electrophoretic Deposition
  • 3.2. Hybrid Hydrothermal Synthesis
  • 3.3. Sonochemical Synthesis
  • 3.4. In Situ Crystallization Method
  • 4. Graphene-MOFs as Electrochemical Sensors in Sensing Biomolecules
  • 4.1. Graphene-MOF-Based Glucose Sensors
  • 4.2. Graphene-MOF-Based Immunosensors
  • 4.3. Graphene-MOF-Based Dopamine Biosensors
  • 4.4. Other Graphene-MOF-Based Biomolecular Sensors.
  • 5. Conclusion and Future Perspectives
  • References
  • Chapter 12: Graphene Paper-Based Electrochemical Sensors for Biomolecules
  • 1. Introduction
  • 2. Fabrication of Graphene Paper Electrodes
  • 2.1. Wet Chemical Process
  • 2.2. Dry Chemical Process
  • 2.3. Electrophoretic and Electrospray Deposition Process
  • 2.4. Other Methods
  • 3. Activation Strategies of Graphene Papers
  • 3.1. Posttreatment Process
  • 3.2. Metal Anchoring
  • 3.3. Metal Oxide Modifications
  • 3.4. Polymer Functionalization
  • 3.5. Biomolecule Immobilization
  • 3.6. Elemental Doping
  • 4. Applications of Graphene Paper as Electrochemical Sensors for Biomolecules
  • 4.1. Sensing of Glucose and Hydrogen Peroxide
  • 4.2. Sensing of Microbes
  • 4.3. Other Uses
  • 5. Concluding Remarks and Future Perspectives
  • Acknowledgments
  • References
  • Chapter 13: Graphene-Containing Microfluidic and Chip-Based Sensor Devices for Biomolecules
  • 1. Introduction
  • 2. Graphene and Derivatives
  • 3. General Characteristics of Graphene
  • 4. Microfluidic Integrated Biosensors and Sensors for Detection of Biomolecules
  • 5. Conclusion and Future Prospects
  • Acknowledgments
  • References
  • Index
  • Back Cover.