Graphene-based electrochemical sensors for biomolecules /
Clasificación: | Libro Electrónico |
---|---|
Otros Autores: | , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Amsterdam, Netherlands :
Elsevier,
[2019]
|
Edición: | First edition. |
Colección: | Micro & nano technologies.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Front Cover
- Graphene-Based Electrochemical Sensors for Biomolecules
- Copyright
- Contents
- Contributors
- Preface
- Acknowledgments
- Chapter 1: Graphene-Modified Electrochemical Sensors
- 1. Introduction
- 2. Electrochemical Sensors
- 3. Importance of Biomolecules
- 4. Graphene
- 4.1. Structure and Properties of Graphene
- 4.2. Synthesis of Graphene
- 4.2.1. Top-Down Methods
- 4.2.2. Bottom-Up Approach
- 5. Electrode Fabrications With Graphene
- 6. Electrochemical Determination of Neurotransmitters, Vitamins, and Amino Acids
- 7. Electrochemical Determination of Purine Derivatives
- 7.1. Electrochemical Determination of UA, XN, and HXN
- 7.2. Electrochemical Determination of DNA Purine Bases (A and G)
- 7.3. Electrochemical Determination of Purine Nucleotides and Nucleosides
- 7.4. Electrochemical Determination of CAF, TP, and AP
- 8. Conclusion and Future Prospects
- References
- Chapter 2: Functionalized Graphene Nanocomposites for Electrochemical Sensors
- 1. Introduction
- 1.1. Functionalized Graphene Nanocomposites
- 1.2. Electrochemical Detection of Biomolecules Using Functionalized Graphene Nanocomposites
- 2. Detection of Nitric Oxide
- 3. Detection of Glucose
- 4. Sensing of Cholesterol
- 5. Detection of Important Neurotransmitters
- 6. Concluding Remarks and Future Prospects
- References
- Chapter 3: Doped-Graphene Modified Electrochemical Sensors
- 1. Introduction
- 2. Heteroatom-Doped Graphene
- 2.1. Element Boron
- 2.2. Element Nitrogen
- 2.3. Element Phosphorus
- 2.4. Element Sulfur
- 3. Heteroatoms Doped Graphene for Electrochemical Sensor Applications
- 3.1. Electrochemical Detection of Hydrogen Peroxide
- 3.2. Electrochemical Detection of Dopamine
- 3.3. Electrochemical Detection of NADH
- 3.4. Electrochemical Detection of Glucose.
- 3.5. Electrochemical Detection of Ascorbic Acid
- 4. Conclusion and Future Outlooks
- References
- Chapter 4: Graphene-Metal Modified Electrochemical Sensors
- 1. Introduction
- 2. Synthesis of Graphene-Metal NP Hybrids
- 2.1. Direct Mixing Method
- 2.2. Electrodeposition Method
- 2.3. Photochemical Method
- 2.4. Substrate Enhance Electroless Deposition Method
- 2.5. Chemical Reduction Method
- 2.6. Microwave Assisted Synthesis Method
- 2.7. Electrolytic Deposition Method for Synthesis of Graphene-Metal NP Hybrids
- 3. Sensing Application of Graphene-Metal NP Hybrids
- 3.1. Dopamine/Uric Acid/Ascorbic Acid Sensor
- 3.2. Glucose Sensor
- 3.3. Hydrogen Peroxide Sensor
- 3.4. Immunological Sensor
- 3.5. Epinephrine and Norepinephrine Sensor
- 3.6. Levofloxacin Sensor
- 3.7. Ethanol Sensor
- 4. Conclusion
- References
- Further Reading
- Chapter 5: Graphene-Metal Oxide Nanocomposite Modified Electrochemical Sensors
- 1. Introduction
- 2. Electrochemical Detection of Biomolecules
- 2.1. Dopamine
- 2.2. Glucose
- 2.3. NADH and Cholesterol Sensing
- 2.3.1. Nicotinamide Adenine Dinucleotide Hydrogen
- 2.3.2. Cholesterol Detection
- 3. Conclusion and Future Perspectives
- References
- Chapter 6: Graphene-Metal Chalcogenide Modified Electrochemical Sensors
- 1. Introduction
- 2. Electrochemical Sensing of Biomolecules Using Graphene-Metal Chalcogenide Composites
- 3. Electrochemical Sensing of Biomolecules Based on Enzymatic and Nonenzymatic Approaches Using Graphene-Metal Chalcogeni ...
- 4. Conclusion and Future Prospects
- References
- Chapter 7: Graphene-Polymer Modified Electrochemical Sensors
- 1. Introduction
- 2. Polymers
- 2.1. Synthetic Polymers
- 2.1.1. Polypyrrole
- 2.1.2. Polyaniline
- 2.1.3. Poly(3,4-ethylenedioxythiophene)
- 2.1.4. Nafion
- 2.2. Natural Polymers
- 2.2.1. Chitosan.
- 2.2.2. Cellulose
- 3. Graphene-Conductive Polymer Hybrid Materials for Development of Electrochemical Sensors
- 3.1. Graphene-Polypyrrole Hybrid Electrochemical Determination of Bioanalytes
- 3.2. Graphene-Polyaniline Hybrid Electrochemical Determination of Bioanalytes
- 3.3. Graphene-Poly(3,4-ethylenedioxythiophene) Hybrid Electrochemical Determination of Bioanalytes
- 3.4. Graphene-Nafion Hybrid Electrochemical Determination of Bioanalytes
- 4. Graphene-Biopolymer Hybrid Materials for Development of Electrochemical Sensors
- 4.1. Graphene-Chitosan Hybrid Electrochemical Determination of Bioanalytes
- 4.2. Graphene-Cellulose Hybrid Electrochemical Determination of Bioanalytes
- 5. Conclusion and Future Prospects
- References
- Chapter 8: Graphene-Carbon Nanotubes Modified Electrochemical Sensors
- 1. Introduction
- 2. Use of Nanomaterials in Sensors
- 3. Introduction to Graphene-Carbon Nanotube Composite Materials and Their Advantages
- 4. Electrochemical Sensor Application Fields of Graphene-Carbon Nanotube Composites
- 4.1. Biomolecule Sensors
- 4.2. Pharmaceutical Sensors
- 4.3. Food Sensors
- 5. Conclusions and Perspectives
- Acknowledgments
- References
- Chapter 9: Graphene-Carbon Nitride-Based Electrochemical Sensors for Biomolecules
- 1. Introduction
- 2. Synthesis of Materials
- 2.1. Preparation of Carbon Nitride Nanomaterials
- 2.2. Preparation of Graphene-Carbon Nitride-Based Nanocomposite Materials and Electrode Modification
- 3. Characterization of Materials
- 3.1. Brunauer-Emmett-Teller Surface Area and X-Ray Diffraction
- 3.2. UV-Visible and Fluorescence Spectroscopy
- 3.3. Fourier Transform Infrared Spectroscopy
- 3.4. Raman Spectroscopy
- 3.5. X-Ray Photoelectron Spectroscopy
- 3.6. Transmission Electron Microscopy
- 4. Electrochemical Behavior and Sensing Applications.
- 5. Conclusions and Future Prospects
- References
- Chapter 10: Graphene-Clay-Based Hybrid Nanostructures for Electrochemical Sensors and Biosensors
- 1. Introduction
- 1.1. Electrochemical Sensors
- 1.2. Advantages of Electrochemical Sensors
- 1.3. Types of Carbon Nanomaterials
- 1.3.1. Carbon Nanotubes
- 1.3.2. Fullerene
- 1.3.3. Graphene
- 1.3.4. Reduced Graphene Oxide
- 1.3.5. Graphene Nanoribbons
- 1.4. Types of Clay Minerals
- 1.4.1. Layered Double Hydroxides
- 1.4.2. Montmorillonite
- 1.4.3. Sepiolite
- 1.4.4. Zeolites
- 1.5. Graphenes in Sensors
- 1.5.1. Graphene and Carbon Nanotubes Nanohybrid Sensors
- 1.5.2. Graphene and Metal Oxide Nanohybrid Sensors
- 1.5.3. Electrochemistry of Graphene
- 1.5.4. Electrochemistry of Clay Particles
- 1.5.5. Importance of Graphene and Clay Nanohybrid Electrodes for Sensor Applications
- 2. Graphene-Clay Nanohybrid Based Electrochemical Sensors
- 2.1. Types of Clay-Graphene Nanohybrid Synthesis
- 2.2. Graphene-Clay Hybrid-Based Electrochemical Sensors
- 2.3. Graphene-Clay Hybrid-Based Gas Sensors
- 2.4. Graphene-Clay Hybrid-Based Biological Sensors (Glucose/H2O2)
- 2.5. Other Graphene-Clay Hybrid-Based Biosensors
- 3. Conclusion and Future Trends
- References
- Further Reading
- Chapter 11: Graphene-Metal-Organic Framework-Modified Electrochemical Sensors
- 1. Introduction
- 2. Mechanism of Charge Transfer in Graphene-MOFs
- 3. Fabrication of Graphene-MOF
- 3.1. Electrophoretic Deposition
- 3.2. Hybrid Hydrothermal Synthesis
- 3.3. Sonochemical Synthesis
- 3.4. In Situ Crystallization Method
- 4. Graphene-MOFs as Electrochemical Sensors in Sensing Biomolecules
- 4.1. Graphene-MOF-Based Glucose Sensors
- 4.2. Graphene-MOF-Based Immunosensors
- 4.3. Graphene-MOF-Based Dopamine Biosensors
- 4.4. Other Graphene-MOF-Based Biomolecular Sensors.
- 5. Conclusion and Future Perspectives
- References
- Chapter 12: Graphene Paper-Based Electrochemical Sensors for Biomolecules
- 1. Introduction
- 2. Fabrication of Graphene Paper Electrodes
- 2.1. Wet Chemical Process
- 2.2. Dry Chemical Process
- 2.3. Electrophoretic and Electrospray Deposition Process
- 2.4. Other Methods
- 3. Activation Strategies of Graphene Papers
- 3.1. Posttreatment Process
- 3.2. Metal Anchoring
- 3.3. Metal Oxide Modifications
- 3.4. Polymer Functionalization
- 3.5. Biomolecule Immobilization
- 3.6. Elemental Doping
- 4. Applications of Graphene Paper as Electrochemical Sensors for Biomolecules
- 4.1. Sensing of Glucose and Hydrogen Peroxide
- 4.2. Sensing of Microbes
- 4.3. Other Uses
- 5. Concluding Remarks and Future Perspectives
- Acknowledgments
- References
- Chapter 13: Graphene-Containing Microfluidic and Chip-Based Sensor Devices for Biomolecules
- 1. Introduction
- 2. Graphene and Derivatives
- 3. General Characteristics of Graphene
- 4. Microfluidic Integrated Biosensors and Sensors for Detection of Biomolecules
- 5. Conclusion and Future Prospects
- Acknowledgments
- References
- Index
- Back Cover.