Cargando…

Graphene-based electrochemical sensors for biomolecules /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Pandikumar, Alagarsamy (Editor ), Rameshkumar, Perumal (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Amsterdam, Netherlands : Elsevier, [2019]
Edición:First edition.
Colección:Micro & nano technologies.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 SCIDIR_on1059124777
003 OCoLC
005 20231120010322.0
006 m o d
007 cr cnu|||unuuu
008 181026t20192019ne a ob 001 0 eng d
040 |a N$T  |b eng  |e rda  |e pn  |c N$T  |d N$T  |d OPELS  |d YDX  |d OCLCF  |d MERER  |d COO  |d D6H  |d OCLCQ  |d LQU  |d S2H  |d OCLCO  |d LVT  |d OCLCQ  |d OCLCO  |d K6U  |d SFB  |d OCLCQ  |d OCLCO 
019 |a 1105179734  |a 1105566197  |a 1229538647 
020 |a 9780128156391  |q (electronic bk.) 
020 |a 0128156392  |q (electronic bk.) 
020 |a 0128153946 
020 |a 9780128153949 
020 |z 9780128153949 
035 |a (OCoLC)1059124777  |z (OCoLC)1105179734  |z (OCoLC)1105566197  |z (OCoLC)1229538647 
050 4 |a TP159.E37 
072 7 |a SCI  |x 013010  |2 bisacsh 
082 0 4 |a 543.19  |2 23 
245 0 0 |a Graphene-based electrochemical sensors for biomolecules /  |c edited by Alagarsamy Pandikumar, Perumal Rameshkumar. 
250 |a First edition. 
264 1 |a Amsterdam, Netherlands :  |b Elsevier,  |c [2019] 
264 4 |c �2019 
300 |a 1 online resource :  |b colour illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Micro & nano technologies series 
504 |a Includes bibliographical references and index. 
588 0 |a Online resource; title from PDF title page (EBSCO, viewed October 30, 2018). 
505 0 |a Front Cover -- Graphene-Based Electrochemical Sensors for Biomolecules -- Copyright -- Contents -- Contributors -- Preface -- Acknowledgments -- Chapter 1: Graphene-Modified Electrochemical Sensors -- 1. Introduction -- 2. Electrochemical Sensors -- 3. Importance of Biomolecules -- 4. Graphene -- 4.1. Structure and Properties of Graphene -- 4.2. Synthesis of Graphene -- 4.2.1. Top-Down Methods -- 4.2.2. Bottom-Up Approach -- 5. Electrode Fabrications With Graphene -- 6. Electrochemical Determination of Neurotransmitters, Vitamins, and Amino Acids -- 7. Electrochemical Determination of Purine Derivatives -- 7.1. Electrochemical Determination of UA, XN, and HXN -- 7.2. Electrochemical Determination of DNA Purine Bases (A and G) -- 7.3. Electrochemical Determination of Purine Nucleotides and Nucleosides -- 7.4. Electrochemical Determination of CAF, TP, and AP -- 8. Conclusion and Future Prospects -- References -- Chapter 2: Functionalized Graphene Nanocomposites for Electrochemical Sensors -- 1. Introduction -- 1.1. Functionalized Graphene Nanocomposites -- 1.2. Electrochemical Detection of Biomolecules Using Functionalized Graphene Nanocomposites -- 2. Detection of Nitric Oxide -- 3. Detection of Glucose -- 4. Sensing of Cholesterol -- 5. Detection of Important Neurotransmitters -- 6. Concluding Remarks and Future Prospects -- References -- Chapter 3: Doped-Graphene Modified Electrochemical Sensors -- 1. Introduction -- 2. Heteroatom-Doped Graphene -- 2.1. Element Boron -- 2.2. Element Nitrogen -- 2.3. Element Phosphorus -- 2.4. Element Sulfur -- 3. Heteroatoms Doped Graphene for Electrochemical Sensor Applications -- 3.1. Electrochemical Detection of Hydrogen Peroxide -- 3.2. Electrochemical Detection of Dopamine -- 3.3. Electrochemical Detection of NADH -- 3.4. Electrochemical Detection of Glucose. 
505 8 |a 3.5. Electrochemical Detection of Ascorbic Acid -- 4. Conclusion and Future Outlooks -- References -- Chapter 4: Graphene-Metal Modified Electrochemical Sensors -- 1. Introduction -- 2. Synthesis of Graphene-Metal NP Hybrids -- 2.1. Direct Mixing Method -- 2.2. Electrodeposition Method -- 2.3. Photochemical Method -- 2.4. Substrate Enhance Electroless Deposition Method -- 2.5. Chemical Reduction Method -- 2.6. Microwave Assisted Synthesis Method -- 2.7. Electrolytic Deposition Method for Synthesis of Graphene-Metal NP Hybrids -- 3. Sensing Application of Graphene-Metal NP Hybrids -- 3.1. Dopamine/Uric Acid/Ascorbic Acid Sensor -- 3.2. Glucose Sensor -- 3.3. Hydrogen Peroxide Sensor -- 3.4. Immunological Sensor -- 3.5. Epinephrine and Norepinephrine Sensor -- 3.6. Levofloxacin Sensor -- 3.7. Ethanol Sensor -- 4. Conclusion -- References -- Further Reading -- Chapter 5: Graphene-Metal Oxide Nanocomposite Modified Electrochemical Sensors -- 1. Introduction -- 2. Electrochemical Detection of Biomolecules -- 2.1. Dopamine -- 2.2. Glucose -- 2.3. NADH and Cholesterol Sensing -- 2.3.1. Nicotinamide Adenine Dinucleotide Hydrogen -- 2.3.2. Cholesterol Detection -- 3. Conclusion and Future Perspectives -- References -- Chapter 6: Graphene-Metal Chalcogenide Modified Electrochemical Sensors -- 1. Introduction -- 2. Electrochemical Sensing of Biomolecules Using Graphene-Metal Chalcogenide Composites -- 3. Electrochemical Sensing of Biomolecules Based on Enzymatic and Nonenzymatic Approaches Using Graphene-Metal Chalcogeni ... -- 4. Conclusion and Future Prospects -- References -- Chapter 7: Graphene-Polymer Modified Electrochemical Sensors -- 1. Introduction -- 2. Polymers -- 2.1. Synthetic Polymers -- 2.1.1. Polypyrrole -- 2.1.2. Polyaniline -- 2.1.3. Poly(3,4-ethylenedioxythiophene) -- 2.1.4. Nafion -- 2.2. Natural Polymers -- 2.2.1. Chitosan. 
505 8 |a 2.2.2. Cellulose -- 3. Graphene-Conductive Polymer Hybrid Materials for Development of Electrochemical Sensors -- 3.1. Graphene-Polypyrrole Hybrid Electrochemical Determination of Bioanalytes -- 3.2. Graphene-Polyaniline Hybrid Electrochemical Determination of Bioanalytes -- 3.3. Graphene-Poly(3,4-ethylenedioxythiophene) Hybrid Electrochemical Determination of Bioanalytes -- 3.4. Graphene-Nafion Hybrid Electrochemical Determination of Bioanalytes -- 4. Graphene-Biopolymer Hybrid Materials for Development of Electrochemical Sensors -- 4.1. Graphene-Chitosan Hybrid Electrochemical Determination of Bioanalytes -- 4.2. Graphene-Cellulose Hybrid Electrochemical Determination of Bioanalytes -- 5. Conclusion and Future Prospects -- References -- Chapter 8: Graphene-Carbon Nanotubes Modified Electrochemical Sensors -- 1. Introduction -- 2. Use of Nanomaterials in Sensors -- 3. Introduction to Graphene-Carbon Nanotube Composite Materials and Their Advantages -- 4. Electrochemical Sensor Application Fields of Graphene-Carbon Nanotube Composites -- 4.1. Biomolecule Sensors -- 4.2. Pharmaceutical Sensors -- 4.3. Food Sensors -- 5. Conclusions and Perspectives -- Acknowledgments -- References -- Chapter 9: Graphene-Carbon Nitride-Based Electrochemical Sensors for Biomolecules -- 1. Introduction -- 2. Synthesis of Materials -- 2.1. Preparation of Carbon Nitride Nanomaterials -- 2.2. Preparation of Graphene-Carbon Nitride-Based Nanocomposite Materials and Electrode Modification -- 3. Characterization of Materials -- 3.1. Brunauer-Emmett-Teller Surface Area and X-Ray Diffraction -- 3.2. UV-Visible and Fluorescence Spectroscopy -- 3.3. Fourier Transform Infrared Spectroscopy -- 3.4. Raman Spectroscopy -- 3.5. X-Ray Photoelectron Spectroscopy -- 3.6. Transmission Electron Microscopy -- 4. Electrochemical Behavior and Sensing Applications. 
505 8 |a 5. Conclusions and Future Prospects -- References -- Chapter 10: Graphene-Clay-Based Hybrid Nanostructures for Electrochemical Sensors and Biosensors -- 1. Introduction -- 1.1. Electrochemical Sensors -- 1.2. Advantages of Electrochemical Sensors -- 1.3. Types of Carbon Nanomaterials -- 1.3.1. Carbon Nanotubes -- 1.3.2. Fullerene -- 1.3.3. Graphene -- 1.3.4. Reduced Graphene Oxide -- 1.3.5. Graphene Nanoribbons -- 1.4. Types of Clay Minerals -- 1.4.1. Layered Double Hydroxides -- 1.4.2. Montmorillonite -- 1.4.3. Sepiolite -- 1.4.4. Zeolites -- 1.5. Graphenes in Sensors -- 1.5.1. Graphene and Carbon Nanotubes Nanohybrid Sensors -- 1.5.2. Graphene and Metal Oxide Nanohybrid Sensors -- 1.5.3. Electrochemistry of Graphene -- 1.5.4. Electrochemistry of Clay Particles -- 1.5.5. Importance of Graphene and Clay Nanohybrid Electrodes for Sensor Applications -- 2. Graphene-Clay Nanohybrid Based Electrochemical Sensors -- 2.1. Types of Clay-Graphene Nanohybrid Synthesis -- 2.2. Graphene-Clay Hybrid-Based Electrochemical Sensors -- 2.3. Graphene-Clay Hybrid-Based Gas Sensors -- 2.4. Graphene-Clay Hybrid-Based Biological Sensors (Glucose/H2O2) -- 2.5. Other Graphene-Clay Hybrid-Based Biosensors -- 3. Conclusion and Future Trends -- References -- Further Reading -- Chapter 11: Graphene-Metal-Organic Framework-Modified Electrochemical Sensors -- 1. Introduction -- 2. Mechanism of Charge Transfer in Graphene-MOFs -- 3. Fabrication of Graphene-MOF -- 3.1. Electrophoretic Deposition -- 3.2. Hybrid Hydrothermal Synthesis -- 3.3. Sonochemical Synthesis -- 3.4. In Situ Crystallization Method -- 4. Graphene-MOFs as Electrochemical Sensors in Sensing Biomolecules -- 4.1. Graphene-MOF-Based Glucose Sensors -- 4.2. Graphene-MOF-Based Immunosensors -- 4.3. Graphene-MOF-Based Dopamine Biosensors -- 4.4. Other Graphene-MOF-Based Biomolecular Sensors. 
505 8 |a 5. Conclusion and Future Perspectives -- References -- Chapter 12: Graphene Paper-Based Electrochemical Sensors for Biomolecules -- 1. Introduction -- 2. Fabrication of Graphene Paper Electrodes -- 2.1. Wet Chemical Process -- 2.2. Dry Chemical Process -- 2.3. Electrophoretic and Electrospray Deposition Process -- 2.4. Other Methods -- 3. Activation Strategies of Graphene Papers -- 3.1. Posttreatment Process -- 3.2. Metal Anchoring -- 3.3. Metal Oxide Modifications -- 3.4. Polymer Functionalization -- 3.5. Biomolecule Immobilization -- 3.6. Elemental Doping -- 4. Applications of Graphene Paper as Electrochemical Sensors for Biomolecules -- 4.1. Sensing of Glucose and Hydrogen Peroxide -- 4.2. Sensing of Microbes -- 4.3. Other Uses -- 5. Concluding Remarks and Future Perspectives -- Acknowledgments -- References -- Chapter 13: Graphene-Containing Microfluidic and Chip-Based Sensor Devices for Biomolecules -- 1. Introduction -- 2. Graphene and Derivatives -- 3. General Characteristics of Graphene -- 4. Microfluidic Integrated Biosensors and Sensors for Detection of Biomolecules -- 5. Conclusion and Future Prospects -- Acknowledgments -- References -- Index -- Back Cover. 
650 0 |a Electrochemical sensors. 
650 0 |a Graphene. 
650 0 |a Nanocomposites (Materials) 
650 0 |a Biomolecules. 
650 2 |a Nanocomposites  |0 (DNLM)D053761 
650 6 |a D�etecteurs �electrochimiques.  |0 (CaQQLa)201-0180574 
650 6 |a Graph�ene.  |0 (CaQQLa)000275277 
650 6 |a Mat�eriaux nanocomposites.  |0 (CaQQLa)000269981 
650 6 |a Biomol�ecules.  |0 (CaQQLa)201-0000255 
650 7 |a SCIENCE  |x Chemistry  |x Analytic.  |2 bisacsh 
650 7 |a Biomolecules  |2 fast  |0 (OCoLC)fst00832624 
650 7 |a Electrochemical sensors  |2 fast  |0 (OCoLC)fst00906367 
650 7 |a Graphene  |2 fast  |0 (OCoLC)fst01746494 
650 7 |a Nanocomposites (Materials)  |2 fast  |0 (OCoLC)fst01748679 
700 1 |a Pandikumar, Alagarsamy,  |e editor. 
700 1 |a Rameshkumar, Perumal,  |e editor. 
830 0 |a Micro & nano technologies. 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/book/9780128153949  |z Texto completo