Cargando…

Progress in molecular biology and translational science. Volume 159 /

'Progress in Molecular Biology and Translational Science' provides in-depth reviews on topics of exceptional scientific importance. Each volume is edited by an internationally recognized expert who selects contributors at the forefront of each field.

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Teplow, David B. (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cambridge, MA : Academic Press, 2018.
Colección:Progress in molecular biology and translational science ; 159.
Temas:
Acceso en línea:Texto completo
Texto completo
Tabla de Contenidos:
  • Front Cover
  • Progress in Molecular Biology and Translational Science
  • Copyright
  • Contents
  • Contributors
  • Preface
  • Chapter One: Targeting the Recently Deorphanized Receptor GPR83 for the Treatment of Immunological, Neuroendocrine and Ne ...
  • 1. Introduction
  • 1.1. Discovery of GPR83
  • 1.2. Discovery of proSAAS and the Signaling Peptide PEN
  • 1.3. ProSAAS Expression and Function
  • 2. Expression and Significance of GPR83 in the Brain
  • 2.1. Expression of GPR83 in the Mouse Brain
  • 2.2. Differential GPR83 Expression Between Mouse, Rat and Human
  • 2.3. Regulation of GPR83 Expression in the Brain
  • 2.4. Role of GPR83 in Hypothalamic Function
  • 2.5. Role of GPR83 in Stress, Reward and Learning and Memory
  • 3. Role of GPR83 in Immune Function
  • 3.1. Expression of GPR83 in Immune Cells
  • 3.2. Significance of GPR83 in Immune Function
  • 4. Current Understanding of GPR83 and PEN
  • 4.1. The Deorphanization of GPR83
  • 5. Conclusions
  • 5.1. Relationship Between GPR83, Stress, Reward, and Immune Function: Future Research Considerations
  • 5.2. The GPR83-PEN Neuropeptide System as a Novel Therapeutic Drug Target
  • 5.3. Summary
  • Acknowledgment
  • References
  • Chapter Two: Arrestins in the Cardiovascular System: An Update
  • 1. Introduction
  • 2. Cardiovascular Adrenergic Receptors and �arrestins
  • 2.1. Cardiovascular �I�ARs and �arrestins
  • 2.2. Cardiac �ARs and �arrestins
  • 2.3. Other Cardiovascular �ARs and �arrestins
  • 3. Cardiovascular Angiotensin II Receptors and �arrestins
  • 3.1. Cardiac AT1Rs and �arrestins
  • 3.2. Vascular AT1Rs and �arrestins
  • 3.3. Adrenal AT1Rs and �arrestins
  • 4. Other Cardiovascular GPCRs and �arrestins
  • 4.1. Endothelin Receptors
  • 4.2. Vasopressin Receptors
  • 4.3. Niacin Receptor (GPR109A)
  • 4.4. P2Y Receptors
  • 4.5. Protease-Activated Receptors
  • 4.6. Apelin Receptor.
  • 4.7. Sphingosine-1-Phosphate 1 Receptor
  • 5. Therapeutic Implications of the Functional Divergence of Cardiovascular �arrestins
  • 6. Conclusions and Future Perspectives
  • References
  • Chapter Three: Global Aquatic Hazard Assessment of Ciprofloxacin: Exceedances of Antibiotic Resistance Development and Ec ...
  • 1. Background
  • 2. Materials and Methods
  • 2.1. Literature Review
  • 2.2. Probabilistic Aquatic Hazard Assessments
  • 3. Results and Discussion
  • 3.1. Ciprofloxacin in Municipal and Hospital Sewage and Effluent Discharges
  • 3.2. Ciprofloxacin in Freshwater, Marine Systems and Groundwater
  • 4. Conclusions
  • References
  • Chapter Four: Group I Intron-Based Therapeutics Through Trans-Splicing Reaction
  • 1. Introduction
  • 2. Group I Intron
  • 2.1. Self-Splicing Activity of Group I Intron
  • 2.2. Development of Trans-Splicing Group I Ribozyme
  • 3. Group I Intron as Therapeutics
  • 3.1. Trans-Splicing Ribozyme for RNA Repair
  • 3.2. Trans-Splicing Ribozyme for RNA Reprogramming
  • 4. Concluding Remarks
  • Acknowledgments
  • References
  • Chapter Five: Major 32-52 Exoribonucleases in the Metabolism of Coding and Non-coding RNA
  • 1. Introduction
  • 2. Polynucleotide Phosphorylase
  • 2.1. PNPase Function and Regulation
  • 2.1.1. PNPase Activity on RNA
  • 2.1.2. PNPase Activity on DNA
  • 2.1.3. Regulation of PNPase Activity
  • 2.1.4. Regulation of PNPase Expression
  • 2.2. PNPase Complexes
  • 2.3. PNPase Structure
  • 2.4. PNPase Substrates
  • 2.4.1. PNPase in the Metabolism of Coding RNA
  • 2.4.2. PNPase in the Metabolism of Non-coding RNA
  • 2.4.3. PNPase in Eukaryotes
  • 2.4.4. PNPase in Pathogenesis and Disease
  • 3. RNase II
  • 3.1. RNase II Function and Regulation
  • 3.1.1. RNase II Activity on RNA
  • 3.1.2. Regulation of RNase II Activity
  • 3.1.3. Regulation of RNase II Expression
  • 3.1.4. RNase II Complexes.
  • 3.2. RNase II Structure
  • 3.3. RNase II Substrates
  • 3.3.1. RNase II in the Metabolism of Coding RNA
  • 3.3.2. RNase II in the Metabolism of Non-coding RNA
  • 4. RNase R
  • 4.1. RNase R Function and Regulation
  • 4.1.1. RNase R Activity on RNA
  • 4.1.2. Regulation of RNase R Stability
  • 4.1.3. RNase R Complexes
  • 4.2. RNase R Structure
  • 4.3. RNase R Substrates
  • 4.3.1. RNase R in the Metabolism of Coding RNA
  • 4.3.2. RNase R in the Metabolism of Non-coding RNA
  • 4.4. RNase II/RNase R in Eukaryotes
  • 4.5. RNase II/RNase R Family Members in Pathogenesis and Disease
  • 5. Concluding Remarks
  • Acknowledgments
  • References
  • Chapter Six: Different Methods of Delivering CRISPR/Cas9 Into Cells
  • 1. Introduction
  • 1.1. Programmable Nucleases
  • 1.2. Genome Silencing vs Genome Editing
  • 1.3. Advantages of CRISPR Over ZFN and TALEN
  • 2. Delivery Methods of CRISPR/Cas9 for Genome Editing
  • 2.1. Viral-Mediated Delivery
  • 2.1.1. Adeno-Associated Viral Vector-Mediated Delivery
  • 2.1.2. Lentiviral Vector-Mediated Delivery
  • 2.1.3. Adenovirus-Mediated Delivery
  • 2.2. Non-viral Vectors
  • 2.2.1. Cationic Vectors
  • 2.2.2. Cell-Penetrating Peptides
  • 2.2.3. Other Non-viral Methods
  • 2.3. Physical Methods
  • 3. Opportunities and Challenges in CRISPR/Cas9 Delivery to Stem Cells
  • 4. Conclusions and Future Perspectives
  • Acknowledgments
  • References
  • Chapter Seven: Structural Simplicity and Mechanistic Complexity in the Hammerhead Ribozyme
  • 1. Background and Structural Overview
  • 2. Fast Minimal Hammerhead Ribozymes
  • 3. Acid-Base Catalysis and the Hammerhead Ribozyme
  • 4. Is the Hammerhead Ligation Reaction the Reverse of the Cleavage Reaction?
  • 5. Do Cooperative Interactions in the Hammerhead Ribozyme Facilitate General Base Catalysis in the Cleavage Reaction?
  • 6. Summary and Concluding Remarks.
  • 6.1. The Structure of the Hammerhead Ribozyme May Be Much Simpler Than We Have Thought
  • 6.2. The Mechanism of the Hammerhead Ribozyme May Be Much More Complicated Than We Have Thought
  • 6.2.1. The Ligation Reaction Mechanism Might Not Be the Reverse of the Cleavage Mechanism
  • 6.2.2. General Base Catalysis in the Cleavage Reaction Mechanism Might Be More Complex
  • 6.3. Concluding Remarks
  • References
  • Index
  • Back Cover.