Cargando…

Thermohydrodynamic programming and constructal design in microsystems /

Thermohydrodynamic Programming and Constructal Design in Microsystems explains the direction of a morphing system configuration that is illustrated by life evolution in nature. This is sometimes referred to as the fourth law of thermodynamics, and was first applied in thermofluidic engineering, with...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Dong, Tao (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Amsterdam : Elsevier, 2018.
Colección:Micro and nano technologies series
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Ii 4500
001 SCIDIR_on1057725695
003 OCoLC
005 20231120010320.0
006 m o d
007 cr cnu---unuuu
008 181024s2018 ne o 000 0 eng d
040 |a N$T  |b eng  |e rda  |e pn  |c N$T  |d N$T  |d EBLCP  |d OPELS  |d YDX  |d OCLCF  |d UKMGB  |d MERER  |d D6H  |d OCLCQ  |d UKAHL  |d OCLCQ  |d S2H  |d OCLCO  |d LVT  |d OCLCQ  |d SFB  |d OCLCQ  |d OCLCO 
015 |a GBB8H2365  |2 bnb 
016 7 |a 019055609  |2 Uk 
019 |a 1059270767  |a 1229532636 
020 |a 9780128131923  |q (electronic bk.) 
020 |a 0128131926  |q (electronic bk.) 
020 |z 9780128131916 
020 |z 0128131918 
035 |a (OCoLC)1057725695  |z (OCoLC)1059270767  |z (OCoLC)1229532636 
050 4 |a TK7875 
072 7 |a TEC  |x 009070  |2 bisacsh 
082 0 4 |a 621.381  |2 23 
100 1 |a Dong, Tao,  |e author. 
245 1 0 |a Thermohydrodynamic programming and constructal design in microsystems /  |c Tao Dong. 
264 1 |a Amsterdam :  |b Elsevier,  |c 2018. 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 0 |a Micro and nano technologies series 
588 0 |a Online resource; title from PDF title page (EBSCO, viewed October 24, 2018) 
505 0 |a Front Cover; Thermohydrodynamic Programming and Constructal Design in Microsystems; Copyright Page; Contents; Biography; Preface 1; Preface 2; Nomenclature; Greek Symbols; Subscript; Superscript; Mathematical Operator; 1 Introduction to constructal theory in microsystems; 1.1 Overview: Thermohydrodynamic Management in Microsystems; 1.1.1 Miniaturization and Design Configuration; 1.1.2 Scaling Effects: Constructal Law Versus Fractal Theory; 1.1.3 Counterbalances and Heuristics in Microsystems; 1.2 Entropy Generation Minimization; 1.3 Efficiency, Territory, and Compactness 
505 8 |a 1.3.1 Point-to-Point Flow1.3.2 Management of Imperfections; 1.4 Constructal Law, Field Synergy, and Entransy; References; 2 Highly conductive thermal inserts and conjugated conduction-convection design; 2.1 Thermal Inserts: Hierarchical Ramification; 2.1.1 Rectangular Units; 2.1.2 Elemental Construct: Optimum Geometric Configuration; 2.1.3 Other Derivatives; 2.2 Conjugated Conduction-Convection Design; 2.2.1 Staggered Pin-Fin Array; Scenario 1; Scenario 2; Pareto optimum; 2.2.2 Axial Profile Optimization of Pin Fin; Governing equation and boundary conditions; Axial fin profile representation 
505 8 |a Bi-objective optimization2.2.3 t-Type Cavity; 2.2.4 Flush-Mounted Discrete Heat Sources; 2.2.5 Insulation With Respect to Temperature Peak, Temperature Gradient, and Wall Stress; References; 3 Thermohydrodynamics for single-phase convection in microchannel networks; 3.1 Thermohydrodynamics of Single-Phase Flow in Microchannels; 3.1.1 Fundamentals of Single-Phase Flow in Microchannels; 3.1.2 Single-Phase Convection Heat Transfer in Microchannels; 3.2 Limitation of Entropy Generation Minimization-Based Design Optimization: An Exemplary Case on Staggered Pin Fin Array i ... 
505 8 |a 3.3 Characteristics of Constructal Convection Networks3.4 Convection Tree Design; 3.4.1 Comb-Like Point-Area/Volume-Point Heat Sink; 3.4.2 Dichotomic Flow Hierarchy From Point Source to Circular Periphery Sink; 3.4.3 Boundary Adaptation; 3.5 Size Limit for Miniaturization; References; 4 Two-phase flow in microscale and nanoscale; 4.1 Vascular Network and Transpiration Tree; 4.1.1 Capillary Dynamics; 4.1.2 Constructal Capillary Network; 4.1.3 Transpiration and Cavitation; Challenges; Biomimetic concepts; 4.2 Wick Design for Loop Heat Pipe; 4.3 Contact Line Region 
505 8 |a 4.4 Interfacial Modeling: Many-Body Dissipative Particle DynamicsReferences; 5 Design optimization techniques; 5.1 Population-Based Pareto Algorithms; 5.1.1 Mixed Integer Nonlinear Programming; 5.1.2 Genetic Algorithm; 5.1.3 Particle Swarm Optimization Algorithm; 5.1.4 Nondominated Sorting; 5.2 Normal Boundary Intersection and Normalized Normal Constraint; References; Index; Back Cover 
520 |a Thermohydrodynamic Programming and Constructal Design in Microsystems explains the direction of a morphing system configuration that is illustrated by life evolution in nature. This is sometimes referred to as the fourth law of thermodynamics, and was first applied in thermofluidic engineering, with more recent applications in physics and biology. The book specifically focuses on synthetic modeling and constructal optimization in the design of microsystemic devices, which are of particular interest to researchers and practitioners in the sphere of micro- and nanoscale physics, a mechanistically deviation from conventional theory. The book is an important reference resource for researchers working in the area of micro- and nanosystems technology and those who want to learn more about how thermodynamics can be effectively applied at the micro level. 
650 0 |a Microelectromechanical systems  |x Design and construction. 
650 7 |a TECHNOLOGY & ENGINEERING  |x Mechanical.  |2 bisacsh 
650 7 |a Microelectromechanical systems  |x Design and construction  |2 fast  |0 (OCoLC)fst01019747 
776 0 8 |i Print version:  |a Dong, Tao.  |t Thermohydrodynamic programming and constructal design in microsystems.  |d Amsterdam : Elsevier, 2018  |z 0128131918  |z 9780128131916  |w (OCoLC)1020030125 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/book/9780128131916  |z Texto completo