Cargando…

Computational quantum chemistry : insights into polymerization reactions /

Computational Quantum Chemistry: Insights into Polymerization Reactions consolidates extensive research results, couples them with computational quantum chemistry (CQC) methods applicable to polymerization reactions, and presents those results systematically. CQC has advanced polymer reaction engine...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Soroush, Masoud (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Amsterdam, Netherlands : Elsevier, 2018.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Front Cover; Computational Quantum Chemistry; Copyright Page; Contents; List of Contributors; Preface; 1 Polymers, Polymerization Reactions, and Computational Quantum Chemistry; 1.1 Polymers; 1.2 Polymerization and Polymer Properties; 1.3 Polymer Characterization; 1.4 Limitations of Experiment-Based Approaches to Understand Polymerization Reactions; 1.5 Computational Quantum Chemistry; 1.5.1 Solvent Effects; 1.6 Conclusion; Acknowledgment; References; 2 A Quantum Mechanical Approach for Accurate Rate Parameters of Free-Radical Polymerization Reactions; 2.1 Introduction
  • 2.2 Multiple Reaction Pathways2.3 Density Functional Theory (DFT) Protocol and Transition State Theory (TST); 2.4 Rate Parameters in Gas Phase; 2.4.1 Homopolymerization of Ethylene; 2.4.2 Relative Hydrogen-Abstraction Parameter; 2.4.2.1 Ethane; 2.4.2.2 2-Butanone; 2.4.2.3 Propylene; 2.4.3 Monomer Reactivity Ratio; 2.4.3.1 Methyl methacrylate; 2.4.3.2 Vinyl acetate; 2.4.3.3 1-Butene; 2.5 Rate Parameters in Condensed Phase; 2.5.1 Choice of Model System; 2.5.2 Multiple Reaction Pathways; 2.5.3 Modeling Rate Parameters in Condensed Phase; 2.5.4 Results and Discussion
  • 3.2.11 Solvent Effect on Reaction Kinetics3.3 Computational Methodology; 3.3.1 Density Functional Theory; 3.3.2 Transition State Theory; 3.3.3 Copolymerization Models; 3.3.3.1 Terminal model; 3.3.3.2 Penultimate unit effect model; 3.3.3.3 Terpolymerization models; 3.3.4 Structural Optimization; 3.4 Estimating Reaction Rate Coefficients in Free-Radical Polymerization; 3.4.1 Homopolymerization and Radical Propagation; 3.4.2 Copolymerization; 3.4.3 Intramolecular and Intermolecular Secondary Reactions; 3.4.4 Exploring the Limits; 3.4.4.1 Functional copolymers and solvent effect
  • 3.4.4.2 Conformation effects on propagation kinetics3.5 Conclusion; References; 4 Theoretical Insights Into Thermal Self-Initiation Reactions of Acrylates; 4.1 Introduction; 4.2 Flory and Mayo Self-Initiation Mechanisms; 4.3 Alkyl Acrylate Thermal Self-Initiation; 4.3.1 Prior Experimental Knowledge; 4.3.2 Knowledge Gained Using Quantum Chemical Calculations; 4.3.2.1 Mayo mechanism; 4.3.2.1.1 Diels-Alder reaction; 4.3.2.2 Flory mechanism; 4.3.2.2.1 [2+2] Thermal cycloaddition reaction; 4.3.2.2.2 Triplet diradical formation; 4.3.2.2.3 Monoradical formation; 4.3.3 Alkyl Acrylate Summary