Cargando…

Source separation and machine learning /

Source Separation and Machine Learning presents the fundamentals in adaptive learning algorithms for Blind Source Separation (BSS) and emphasizes the importance of machine learning perspectives. It illustrates how BSS problems are tackled through adaptive learning algorithms and model-based approach...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Chien, Jen-Tzung (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: London : Academic Press, an imprint of Elsevier, [2019]
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 SCIDIR_on1057550047
003 OCoLC
005 20231120010320.0
006 m o d
007 cr cnu|||unuuu
008 181023t20192019enk ob 001 0 eng d
040 |a N$T  |b eng  |e rda  |e pn  |c N$T  |d N$T  |d OPELS  |d CNCGM  |d OCLCF  |d UKMGB  |d YDX  |d MERER  |d D6H  |d OCLCQ  |d LQU  |d COO  |d SNM  |d OCLCQ  |d OCLCO  |d K6U  |d OCLCQ  |d SFB  |d OCLCQ  |d OCLCO 
015 |a GBB8J8736  |2 bnb 
016 7 |a 019094303  |2 Uk 
019 |a 1105189200  |a 1105565274 
020 |a 9780128045770  |q (electronic bk.) 
020 |a 0128045779  |q (electronic bk.) 
020 |a 9780128177969  |q (electronic bk.) 
020 |a 0128177969  |q (electronic bk.) 
020 |z 9780128045664 
035 |a (OCoLC)1057550047  |z (OCoLC)1105189200  |z (OCoLC)1105565274 
050 4 |a TK5102.9  |b .C45 2019 
072 7 |a TEC  |x 009070  |2 bisacsh 
082 0 4 |a 621.3822  |2 23 
100 1 |a Chien, Jen-Tzung,  |e author. 
245 1 0 |a Source separation and machine learning /  |c Jen-Tzung Chien. 
264 1 |a London :  |b Academic Press, an imprint of Elsevier,  |c [2019] 
264 4 |c �2019 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
504 |a Includes bibliographical references and index. 
588 0 |a Online resource; title from PDF title page (EBSCO, viewed October 24, 2018). 
520 |a Source Separation and Machine Learning presents the fundamentals in adaptive learning algorithms for Blind Source Separation (BSS) and emphasizes the importance of machine learning perspectives. It illustrates how BSS problems are tackled through adaptive learning algorithms and model-based approaches using the latest information on mixture signals to build a BSS model that is seen as a statistical model for a whole system. Looking at different models, including independent component analysis (ICA), nonnegative matrix factorization (NMF), nonnegative tensor factorization (NTF), and deep neural network (DNN), the book addresses how they have evolved to deal with multichannel and single-channel source separation. 
650 0 |a Blind source separation. 
650 0 |a Machine learning. 
650 6 |a S�eparation aveugle de sources (Traitement du signal)  |0 (CaQQLa)000266787 
650 6 |a Apprentissage automatique.  |0 (CaQQLa)201-0131435 
650 7 |a TECHNOLOGY & ENGINEERING  |x Mechanical.  |2 bisacsh 
650 7 |a Blind source separation  |2 fast  |0 (OCoLC)fst01739925 
650 7 |a Machine learning  |2 fast  |0 (OCoLC)fst01004795 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/book/9780128177969  |z Texto completo