Cargando…

Dynamic estimation and control of power systems /

Dynamic estimation and control is a fast growing and widely researched field of study that lays the foundation for a new generation of technologies that can dynamically, adaptively and automatically stabilize power systems. This book provides a comprehensive introduction to research techniques for r...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Singh, Abhinav Kumar (Autor), Pal, Bikash C. (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: London, United Kingdom : Academic Press, an imprint of Elsevier, [2019]
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Front Cover; Dynamic Estimation and Control of Power Systems; Copyright; Contents; About the Authors; Preface; List of Figures; List of Tables; List of Abbreviations; List of Symbols; 1 Introduction; 1.1 State of the art; 1.1.1 Energy management system; 1.1.2 Phasor measurement units (PMUs); 1.1.3 Flexible AC transmission system (FACTS); 1.1.4 Wide-area measurements and wide-area control; 1.1.5 Dynamic state estimation (DSE) and dynamic control; 1.2 Static state estimation (SSE) versus dynamic state estimation (DSE); 1.3 Challenges to power system dynamic estimation and control.
  • 1.4 Book organization2 Power System Modeling, Simulation, and Control Design; 2.1 Power system model; 2.1.1 Generating unit: a generator and its excitation system; 2.1.2 Power system stabilizers (PSSs); 2.1.3 FACTS control devices; 2.1.3.1 Thyristor-controlled series capacitor (TCSC); 2.1.3.2 Static VAR compensator (SVC); 2.1.3.3 Thyristor-controlled phase angle regulator (TCPAR); 2.1.4 Loads, network interface, and network equations; 2.2 Power system simulation and analysis; 2.2.1 Load ow analysis; 2.2.2 Initialization and time-domain simulation.
  • 2.2.3 Linear analysis and basics of control design2.2.3.1 System linearization; 2.2.3.2 Eigenvalues; 2.2.3.3 Participation factor and residue; 2.2.3.4 Controllable devices, controllers, inputs, and outputs: examples; 2.2.3.5 Electromechanical modes; 2.2.3.6 Interarea modes and mode shapes; 2.2.3.7 Residue-based linear control design; 3 Centralized Dynamic Estimation and Control; 3.1 NCPS modeling with output feedback; 3.1.1 State space representation of power system; 3.1.2 Sensors and actuators; 3.1.3 Communication protocol, packet delay, and packet dropout; 3.1.4 Controller; 3.1.5 Estimator.
  • 3.1.5.1 State prediction step3.1.5.2 Measurement prediction and Kalman update step; 3.2 Closed-loop stability and damping response; 3.2.1 Stability analysis framework of a jump linear system; 3.2.1.1 LMIs for mean-square stability; 3.2.1.2 LMIs for adequate damping response; 3.2.2 Physical signi cance of the developed LMIs; 3.3 Case study: 68-bus 16-machine 5-area NCPS; 3.3.1 System description; 3.3.2 Simulation results and discussion; 3.3.2.1 Operating condition 1 (base case); 3.3.2.2 Operating condition 2; 3.3.2.3 Effect of sampling period; 3.3.2.4 Robustness; 3.4 Limitations; 3.5 Summary.
  • 4 Decentralized Dynamic Estimation Using PMUs4.1 Problem statement and methodology in brief; 4.1.1 Problem statement; 4.1.2 Methodology; 4.2 Power system modeling and discrete DAEs; 4.2.1 Generators; 4.2.2 Excitation systems; 4.2.3 Power system stabilizer (PSS); 4.2.4 Network model; 4.3 Pseudoinputs and decentralization of DAEs; 4.4 Unscented Kalman lter (UKF); 4.4.1 Generation of sigma points; 4.4.2 State prediction; 4.4.3 Measurement prediction; 4.4.4 Kalman update; 4.5 Case study: 68-bus test system; 4.5.1 Noise variances; 4.5.1.1 Measurement noise; 4.5.1.2 Process noise.