|
|
|
|
LEADER |
00000cam a2200000 i 4500 |
001 |
SCIDIR_on1055284785 |
003 |
OCoLC |
005 |
20231120010317.0 |
006 |
m o d |
007 |
cr cnu---unuuu |
008 |
181002s2018 ne o 000 0 eng d |
040 |
|
|
|a OPELS
|b eng
|e rda
|e pn
|c OPELS
|d N$T
|d YDX
|d EBLCP
|d N$T
|d UKMGB
|d OCLCF
|d OTZ
|d D6H
|d UKAHL
|d OCLCQ
|d OCLCO
|d OCLCQ
|d OCLCO
|d OCLCQ
|d OCLCO
|
015 |
|
|
|a GBB8H6389
|2 bnb
|
016 |
7 |
|
|a 019062988
|2 Uk
|
019 |
|
|
|a 1055840980
|a 1056072583
|
020 |
|
|
|a 9780444640734
|q (electronic bk.)
|
020 |
|
|
|a 0444640738
|q (electronic bk.)
|
020 |
|
|
|z 9780444640727
|q (print)
|
020 |
|
|
|z 044464072X
|
035 |
|
|
|a (OCoLC)1055284785
|z (OCoLC)1055840980
|z (OCoLC)1056072583
|
050 |
|
4 |
|a QH352
|
072 |
|
7 |
|a NAT
|x 010000
|2 bisacsh
|
072 |
|
7 |
|a NAT
|x 045040
|2 bisacsh
|
072 |
|
7 |
|a SCI
|x 026000
|2 bisacsh
|
072 |
|
7 |
|a SCI
|x 020000
|2 bisacsh
|
082 |
0 |
4 |
|a 577.8/8015118
|2 23
|
245 |
0 |
0 |
|a Integrated population biology and modeling.
|n Part A /
|c edited by Arni S.R. Srinivasa, C.R. Rao.
|
264 |
|
1 |
|a Amsterdam, Netherlands :
|b North Holland is an imprint of Elsevier,
|c 2018.
|
300 |
|
|
|a 1 online resource
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a Handbook of statistics ;
|v volume 39
|
588 |
0 |
|
|a Online resource; title from PDF title page (EBSCO, viewed October 15, 2018)
|
505 |
0 |
|
|a Front Cover; Integrated Population Biology and Modeling, Part A; Copyright; Contents; Contributors; Preface; Section I: Cellular Population Dynamics; Chapter 1: Population Dynamics and Evolution of Cancer Cells; 1. Introduction; 2. Evolutionary Dynamics of Escape From Tissue Homeostasis; 2.1. Mathematical Models of Tissue Homeostasis; 2.2. Evolutionary Dynamics of Feedback Escape; 2.3. Feedback, Stem Cell Enrichment, and Drug Resistance; 3. Telomeres and the Evolutionary Potential of Cells; 3.1. Replicative Limits and Cellular Hierarchy; 3.2. Replicative Limits and Precancerous Mutations
|
505 |
8 |
|
|a 3.3. Replicative Limits in a Growing Cell Population4. Dynamics of Therapy Responses and Resistance Evolution; 4.1. Dynamics Underlying Chemoprevention With Aspirin; 5. Conclusions; References; Chapter 2: Stochastic and Deterministic Modeling of Cell Migration; 1. Introduction; 2. Cell Motility; 2.1. Connecting Stochastic and Deterministic Models of Cell Movement; 2.1.1. On-Lattice Models; 2.1.1.1. Noninteracting Cells Undergoing Unbiased Movement; 2.1.1.2. Excluding Cells; 2.1.2. Off-Lattice Models; 2.1.2.1. Noninteracting Cells Undergoing Unbiased Movement; 2.1.2.2. Volume-Excluding Cells
|
505 |
8 |
|
|a 2.2. Higher Dimensions2.3. Higher Order Closure Approximations; 3. Model Extensions; 3.1. Cell Proliferation; 3.2. Cell Interactions; 3.2.1. Chemotaxis; 3.2.2. Adhesion-Repulsion; 3.2.3. Pushing and Pulling; 3.3. Growing Domains; 3.4. Persistence of Motion; 4. Conclusion; References; Chapter 3: Data-Driven Mathematical Modeling of Microbial Community Dynamics; 1. Introduction; 2. Microbial Community Profiling; 3. Mechanistic Modeling Approach; 3.1. Derivation of Specific LV Systems; 3.1.1. Derivation of Logistic Equation; 3.1.2. Derivation of Competition Model
|
505 |
8 |
|
|a 3.1.3. Derivation of Cooperative Model3.1.4. Prey-Predator Model; 3.2. Generalized Lotka-Volterra Equations; 3.2.1. Equivalent Formulation via Replicator Dynamics; 3.3. Data Fitting; 3.3.1. Basic Theory of Parameter Fitting; 3.3.2. Maximum Likelihood Estimation; 3.3.3. Least Square Method; 3.3.4. Bayesian Inference; 3.3.5. Markov Chain Monte-Carlo; 3.3.6. Metropolis-Hastings Method; 3.3.7. Gibbs Sampling Method; 3.3.8. Hamiltonian Monte-Carlo Method; 3.3.9. Example of Bayesian Inference via Hamilton Monte-Carlo; 4. Data-Driven Approach; 4.1. Attractor Reconstruction From Time-Series Data
|
505 |
8 |
|
|a 4.1.1. Basic Theory4.1.2. Practical Extension: Estimation of Lags; 4.1.3. Practical Extension: Estimation of Embedding Dimension; 4.1.4. Causality Inference of Nonlinear Time Series; 4.1.5. Examples of Attractor Reconstruction; 4.1.6. Examples of Causality Inference for Artificially Generated Time-Series Data; 4.1.7. Examples of Causality Inference for Microbiome Time-Series Data; 5. Conclusion; Acknowledgments; References; Chapter 4: Reaction-Diffusion Kinetics in Growing Domains; 1. Introduction; 2. Diffusion on a Uniformly Growing Domain; 2.1. Langevin Equation; 2.2. Fokker-Planck Equation
|
650 |
|
0 |
|a Population biology
|x Mathematical models.
|
650 |
|
6 |
|a Biologie des populations
|0 (CaQQLa)201-0062278
|x Mod�eles math�ematiques.
|0 (CaQQLa)201-0379082
|
650 |
|
7 |
|a NATURE
|x Ecology.
|2 bisacsh
|
650 |
|
7 |
|a NATURE
|x Ecosystems & Habitats
|x Wilderness.
|2 bisacsh
|
650 |
|
7 |
|a SCIENCE
|x Environmental Science.
|2 bisacsh
|
650 |
|
7 |
|a SCIENCE
|x Life Sciences
|x Ecology.
|2 bisacsh
|
650 |
|
7 |
|a Population biology
|x Mathematical models
|2 fast
|0 (OCoLC)fst01071538
|
700 |
1 |
|
|a Srinivasa Rao, Arni S. R.,
|e editor.
|
700 |
1 |
|
|a Rao, C. Radhakrishna
|q (Calyampudi Radhakrishna),
|d 1920-
|e editor.
|
776 |
0 |
8 |
|i Print version :
|z 9780444640727
|
830 |
|
0 |
|a Handbook of statistics (Amsterdam, Netherlands) ;
|v v. 39.
|
856 |
4 |
0 |
|u https://sciencedirect.uam.elogim.com/science/handbooks/01697161/39
|z Texto completo
|
856 |
4 |
0 |
|u https://sciencedirect.uam.elogim.com/science/book/9780444640727
|z Texto completo
|