|
|
|
|
LEADER |
00000cam a2200000Ma 4500 |
001 |
SCIDIR_on1055046207 |
003 |
OCoLC |
005 |
20231120010317.0 |
006 |
m o d |
007 |
cr cnu---unuuu |
008 |
180929s2019 ne o 000 0 eng d |
040 |
|
|
|a EBLCP
|b eng
|e pn
|c EBLCP
|d N$T
|d YDX
|d OPELS
|d N$T
|d OCLCF
|d OTZ
|d LVT
|d RIU
|d UKMGB
|d UPM
|d OCLCQ
|d D6H
|d CEF
|d LQU
|d OCLCQ
|d S2H
|d OCLCO
|d OCLCQ
|d SFB
|d OCLCQ
|
016 |
7 |
|
|a 019026690
|2 Uk
|
019 |
|
|
|a 1054374411
|a 1055264041
|a 1076360262
|a 1086016426
|a 1105172959
|a 1105565480
|a 1120118405
|a 1162484914
|
020 |
|
|
|a 9780128141533
|q (electronic bk.)
|
020 |
|
|
|a 0128141530
|q (electronic bk.)
|
020 |
|
|
|z 0128141522
|
020 |
|
|
|z 9780128141526
|
035 |
|
|
|a (OCoLC)1055046207
|z (OCoLC)1054374411
|z (OCoLC)1055264041
|z (OCoLC)1076360262
|z (OCoLC)1086016426
|z (OCoLC)1105172959
|z (OCoLC)1105565480
|z (OCoLC)1120118405
|z (OCoLC)1162484914
|
050 |
|
4 |
|a TA347.F5
|
072 |
|
7 |
|a MAT
|x 041000
|2 bisacsh
|
082 |
0 |
4 |
|a 518.25
|2 23
|
100 |
1 |
|
|a Sheikholeslami, Mohsen,
|d 1988-
|
245 |
1 |
0 |
|a Application of Control Volume Based Finite Element Method (CVFEM) for Nanofluid Flow and Heat Transfer /
|c Mohsen Sheikholeslami.
|
260 |
|
|
|a Amsterdam :
|b Elsevier,
|c �2019.
|
300 |
|
|
|a 1 online resource (782 pages)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a Micro and Nano Technologies
|
588 |
0 |
|
|a Print version record.
|
505 |
0 |
|
|a Front Cover; Application of Control Volume Based Finite Element Method (CVFEM) for Nanofluid Flow and Heat Transfer; Copyright Page; Contents; Biography; Preface; 1 Detailed Explanation of Control Volume-based Finite Element Method; 1.1 Introduction; 1.2 The Discretization: Grid, Mesh, and Cloud; 1.2.1 Grid; 1.2.2 Mesh; 1.2.3 Cloud; 1.3 The Element and the Interpolation Shape Functions; 1.4 Region of Support and Control Volume; 1.5 Discretization and Solution; 1.5.1 Steady State Advection-Diffusion With Source Terms; 1.5.2 Implementation of Source Terms and Boundary Conditions.
|
505 |
8 |
|
|a 1.5.3 Unsteady Advection-Diffusion With Source TermsReferences; 2 Simulation of Vorticity Stream Function Formulation by Means of CVFEM; 2.1 CVFEM Stream Function-Vorticity Solution for a Lid Driven Cavity Flow; 2.1.1 Definition of the Problem and Governing Equation; 2.1.2 The CVFEM Discretization of the Stream Function Equation; 2.1.2.1 Diffusion Contributions; 2.1.2.2 Source Terms; 2.1.2.3 Boundary Conditions; 2.1.3 The CVFEM Discretization of the Vorticity Equation; 2.1.3.1 Diffusion Contributions; 2.1.3.2 The Advection Coefficients; 2.1.3.3 Boundary Conditions.
|
505 |
8 |
|
|a 2.1.4 Calculating the Nodal Velocity Field2.1.5 Results; 2.2 CVFEM Stream Function-Vorticity Solution for Natural Convection; 2.2.1 Definition of the Problem and Governing Equation; 2.2.2 Effect of Active Parameters; References; 3 Various Application of Nanofluid for Heat Transfer Augmentation; 3.1 Introduction; 3.1.1 Definition of Nanofluid; 3.1.2 Model Description; 3.1.3 Conservation Equations; 3.1.3.1 Single-phase Model; 3.1.3.2 Two-phase Model; 3.1.3.2.1 Continuity Equation; 3.1.3.2.2 Nanoparticle Continuity Equation; 3.1.3.2.3 Momentum Equation; 3.1.3.2.4 Energy Equation.
|
505 |
8 |
|
|a 3.1.4 Physical Properties of the Nanofluids for Single-phase Model3.1.4.1 Density; 3.1.4.2 Specific Heat Capacity; 3.1.4.3 Thermal Expansion Coefficient; 3.1.4.4 The Electrical Conductivity; 3.1.4.5 Dynamic Viscosity; 3.1.4.6 Thermal Conductivity; 3.2 Simulation of Nanofluid Flow and Heat Transfer; 3.2.1 Semianalytical Methods; 3.2.2 Runge-Kutta Method; 3.2.3 Finite Difference Method; 3.2.4 Finite Volume Method; 3.2.5 Finite Element Method; 3.2.6 Control Volume-based Finite Element Method; 3.2.7 Lattice Boltzmann Method; References.
|
505 |
8 |
|
|a 4 Single-phase Model for Nanofluid Free Convection Heat Transfer by Means of CVFEM4.1 Introduction; 4.2 Nanofluid Hydrothermal Analysis in a Complex Shaped Cavity; 4.2.1 Problem Definition; 4.2.2 Governing Equation; 4.2.3 Effects of Active Parameters; 4.3 Natural Convection Heat Transfer in a Nanofluid Filled Enclosure With Elliptic Inner Cylinder; 4.3.1 Problem Definition; 4.3.2 Governing Equation; 4.3.3 Effects of Active Parameters; 4.4 Nanofluid Free Convection Heat Transfer in a Tilted Cavity; 4.4.1 Problem Definition; 4.4.2 Governing Equation; 4.4.3 Effects of Active Parameters.
|
504 |
|
|
|a References.
|
650 |
|
0 |
|a Finite element method.
|
650 |
|
6 |
|a M�ethode des �el�ements finis.
|0 (CaQQLa)201-0021899
|
650 |
|
7 |
|a MATHEMATICS
|x Numerical Analysis.
|2 bisacsh
|
650 |
|
7 |
|a Finite element method.
|2 fast
|0 (OCoLC)fst00924897
|
776 |
0 |
8 |
|i Print version:
|a Sheikholeslami, Mohsen.
|t Application of Control Volume Based Finite Element Method (CVFEM) for Nanofluid Flow and Heat Transfer.
|d San Diego : Elsevier, �2018
|z 9780128141526
|
830 |
|
0 |
|a Micro & nano technologies.
|
856 |
4 |
0 |
|u https://sciencedirect.uam.elogim.com/science/book/9780128141526
|z Texto completo
|