Cargando…

Computational modelling of nanoparticles /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Bromley, Stefan T., 1971- (Editor ), Woodley, Scott M. (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Amsterdam, Netherlands : Elsevier, [2019]
Colección:Frontiers of nanoscience ; v. 12.
Temas:
Acceso en línea:Texto completo
Texto completo
Tabla de Contenidos:
  • Front Cover; Computational Modelling of Nanoparticles; Copyright; Contents; Contributors; Introduction to modeling nanoclusters and nanoparticles; 1. Introduction; 2. Nanoparticle properties and energy landscapes; 3. Predicting nanoparticle structure; 4. Energy functions; 5. Global optimization; 6. Global optimization using a single MC walker; 7. Global optimization using a single-walker and local gradients; 8. Global optimization using interacting multiple walkers or populations; 9. Atomic structure of nanoclusters; 10. Summary; Acknowledgments; References
  • Chapter 1: How to design models for ceria nanoparticles: Challenges and strategies for describing nanostructured reducibl ... 1.1. Introduction; 1.1.1. Cerium dioxide: Properties and applications; 1.1.2. Nanostructured ceria and its role in catalysis; 1.1.3. Outline of the chapter; 1.2. Designing and optimizing models of ceria nanoparticles; 1.2.1. Brief overview of methods for describing the electronic structure of ceria; 1.2.2. Ceria nanoparticles from bulk cuts; 1.2.3. Globally optimized stoichiometric (CeO2)n nanoparticles; 1.2.4. Assemblies of ceria nanoparticles
  • 1.3. Describing reduced ceria nanoparticles1.3.1. The challenging characterization of oxygen vacancies in Ceria-based systems; 1.3.2. Oxygen vacancies in single and assembled ceria nanoparticles; 1.3.3. Superoxidized nanoparticles; 1.4. Describing the reactivity of ceria nanoparticles; 1.4.1. Adsorbed molecules on ceria nanoparticles; 1.4.2. Modeling transition metal species on nanostructured ceria; 1.4.2.1. Metal atoms adsorbed on ceria nanoparticles; 1.4.2.2. Metal-doped ceria nanoparticles; 1.4.2.3. Metal clusters and nanoparticles; 1.5. Summary and outlook; References
  • Chapter 2: Simulating heterogeneous catalysis on metallic nanoparticles: From under-coordinated sites to extended facets2.1. Metallic nanoparticles in science and technology; 2.2. Isolated metal nanoparticle models; 2.3. Computational simulation levels; 2.4. Molecular adsorption on metal nanoparticles; 2.5. Addressing reactivity on metal nanoparticles; 2.6. Outlook and frontiers; References; Chapter 3: From nanoparticles to mesoporous materials; 3.1. Introduction; 3.2. Theoretical methods and models; 3.3. Generating atom-level models; 3.3.1. Nanoparticles
  • 3.3.1.1. Crystallization and microstructure3.3.1.2. Model validation; 3.3.2. Nanoporous architectures; 3.3.2.1. Model validation; 3.4. Calculating properties; 3.4.1. Catalytic activity; 3.4.1.1. Oxygen extraction energy; 3.4.1.2. Visualizing catalytic reactivity; 3.4.1.3. Oxygen transport; 3.5. Computer-aided design; 3.5.1. Nanostructural design parameters; 3.5.2. Catalytic activity mapping; 3.5.3. Screening and targeted synthesis; 3.6. Outlook; References; Chapter 4: The DFT-genetic algorithm approach for global optimization of subnanometer bimetallic clusters; 4.1. Introduction