|
|
|
|
LEADER |
00000cam a2200000 i 4500 |
001 |
SCIDIR_on1052782476 |
003 |
OCoLC |
005 |
20231120010315.0 |
006 |
m o d |
007 |
cr cnu---unuuu |
008 |
180918s2019 ne a ob 001 0 eng d |
040 |
|
|
|a OPELS
|b eng
|e rda
|e pn
|c OPELS
|d N$T
|d EBLCP
|d YDX
|d COO
|d UPM
|d MERER
|d OCLCQ
|d OCLCO
|d K6U
|d OCLCQ
|
019 |
|
|
|a 1053999968
|a 1054060874
|
020 |
|
|
|a 9780081022757
|q (electronic bk.)
|
020 |
|
|
|a 0081022751
|q (electronic bk.)
|
020 |
|
|
|z 9780081022320
|q (print)
|
020 |
|
|
|z 0081022328
|
035 |
|
|
|a (OCoLC)1052782476
|z (OCoLC)1053999968
|z (OCoLC)1054060874
|
050 |
|
4 |
|a TA418.9.N35
|
072 |
|
7 |
|a TEC
|x 009000
|2 bisacsh
|
072 |
|
7 |
|a TEC
|x 035000
|2 bisacsh
|
082 |
0 |
4 |
|a 620.1/15
|2 23
|
245 |
0 |
0 |
|a Computational modelling of nanoparticles /
|c edited by Stefan T. Bromley, Scott M. Woodley.
|
264 |
|
1 |
|a Amsterdam, Netherlands :
|b Elsevier,
|c [2019]
|
300 |
|
|
|a 1 online resource :
|b illustrations
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a Frontiers of nanoscience ;
|v volume 12
|
588 |
0 |
|
|a Online resource; title from PDF title page (ScienceDirect, viewed September 18, 2018).
|
504 |
|
|
|a Includes bibliographical references and index.
|
505 |
0 |
|
|a Front Cover; Computational Modelling of Nanoparticles; Copyright; Contents; Contributors; Introduction to modeling nanoclusters and nanoparticles; 1. Introduction; 2. Nanoparticle properties and energy landscapes; 3. Predicting nanoparticle structure; 4. Energy functions; 5. Global optimization; 6. Global optimization using a single MC walker; 7. Global optimization using a single-walker and local gradients; 8. Global optimization using interacting multiple walkers or populations; 9. Atomic structure of nanoclusters; 10. Summary; Acknowledgments; References
|
505 |
8 |
|
|a Chapter 1: How to design models for ceria nanoparticles: Challenges and strategies for describing nanostructured reducibl ... 1.1. Introduction; 1.1.1. Cerium dioxide: Properties and applications; 1.1.2. Nanostructured ceria and its role in catalysis; 1.1.3. Outline of the chapter; 1.2. Designing and optimizing models of ceria nanoparticles; 1.2.1. Brief overview of methods for describing the electronic structure of ceria; 1.2.2. Ceria nanoparticles from bulk cuts; 1.2.3. Globally optimized stoichiometric (CeO2)n nanoparticles; 1.2.4. Assemblies of ceria nanoparticles
|
505 |
8 |
|
|a 1.3. Describing reduced ceria nanoparticles1.3.1. The challenging characterization of oxygen vacancies in Ceria-based systems; 1.3.2. Oxygen vacancies in single and assembled ceria nanoparticles; 1.3.3. Superoxidized nanoparticles; 1.4. Describing the reactivity of ceria nanoparticles; 1.4.1. Adsorbed molecules on ceria nanoparticles; 1.4.2. Modeling transition metal species on nanostructured ceria; 1.4.2.1. Metal atoms adsorbed on ceria nanoparticles; 1.4.2.2. Metal-doped ceria nanoparticles; 1.4.2.3. Metal clusters and nanoparticles; 1.5. Summary and outlook; References
|
505 |
8 |
|
|a Chapter 2: Simulating heterogeneous catalysis on metallic nanoparticles: From under-coordinated sites to extended facets2.1. Metallic nanoparticles in science and technology; 2.2. Isolated metal nanoparticle models; 2.3. Computational simulation levels; 2.4. Molecular adsorption on metal nanoparticles; 2.5. Addressing reactivity on metal nanoparticles; 2.6. Outlook and frontiers; References; Chapter 3: From nanoparticles to mesoporous materials; 3.1. Introduction; 3.2. Theoretical methods and models; 3.3. Generating atom-level models; 3.3.1. Nanoparticles
|
505 |
8 |
|
|a 3.3.1.1. Crystallization and microstructure3.3.1.2. Model validation; 3.3.2. Nanoporous architectures; 3.3.2.1. Model validation; 3.4. Calculating properties; 3.4.1. Catalytic activity; 3.4.1.1. Oxygen extraction energy; 3.4.1.2. Visualizing catalytic reactivity; 3.4.1.3. Oxygen transport; 3.5. Computer-aided design; 3.5.1. Nanostructural design parameters; 3.5.2. Catalytic activity mapping; 3.5.3. Screening and targeted synthesis; 3.6. Outlook; References; Chapter 4: The DFT-genetic algorithm approach for global optimization of subnanometer bimetallic clusters; 4.1. Introduction
|
650 |
|
0 |
|a Nanoparticles
|x Computer simulation.
|
650 |
|
6 |
|a Nanoparticules
|0 (CaQQLa)201-0262530
|x Simulation par ordinateur.
|0 (CaQQLa)201-0379159
|
650 |
|
7 |
|a TECHNOLOGY & ENGINEERING
|x Engineering (General)
|2 bisacsh
|
650 |
|
7 |
|a TECHNOLOGY & ENGINEERING
|x Reference.
|2 bisacsh
|
700 |
1 |
|
|a Bromley, Stefan T.,
|d 1971-
|e editor.
|
700 |
1 |
|
|a Woodley, Scott M.,
|e editor.
|
776 |
0 |
8 |
|i Print version:
|a Bromley, Stefan T.
|t Computational Modelling of Nanoparticles.
|d San Diego : Elsevier, �2018
|z 9780081022320
|
830 |
|
0 |
|a Frontiers of nanoscience ;
|v v. 12.
|
856 |
4 |
0 |
|u https://sciencedirect.uam.elogim.com/science/bookseries/18762778/12
|z Texto completo
|
856 |
4 |
0 |
|u https://sciencedirect.uam.elogim.com/science/book/9780081022320
|z Texto completo
|