Cargando…

Mechanobiology in Health and Disease /

Mechanobiology in Health and Disease brings together contributions from leading biologists, clinicians, physicists and engineers in one convenient volume, providing a unified source of information for researchers in this highly multidisciplinary area. Opening chapters provide essential background in...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Verbruggen, Stefaan W. (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: [Place of publication not identified] : Elsevier Ltd. : Academic Press, 2018.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Front Cover; Mechanobiology in Health and Disease; Copyright; Contents; Contributors; Foreword to mechanobiology in health and disease; Preface; Acknowledgments; Chapter 1: Techniques for studying mechanobiology; 1. Introduction to Mechanobiology; 2. Animal Models and Tissue Engineering to Study Mechanobiology; 2.1. Analysis of a Single Cell; 2.1.1. Force application techniques to analyze a single cell; 2.1.1.1. Optical tweezers; 2.1.1.2. Atomic force microscopy; 2.1.1.3. Micropipette aspiration; 2.2. Cellular Interactions With Their Local Environment
  • 2.2.1. Techniques to analyze cellular tractions2.2.1.1. Traction force microscopy; 2.2.1.2. Micropillar arrays; 2.3. Bioreactors to Mimic the in vivo Environment; 2.3.1. Types of bioreactors; 2.3.2. Future of bioreactors; 2.4. Animal Loading Models; 2.4.1. Noninvasive extrinsic skeletal loading models; 2.4.1.1. Tibial four-point bend model; 2.4.1.2. Ulnar compression model; 2.4.2. Embryonic animal models with an altered mechanical environment; 2.4.2.1. In ovo immobilization; 2.4.2.2. Mammalian models; 2.4.2.3. Zebrafish models; 2.5. Fluorescent Proteins (FPs) and Imaging Techniques
  • 2.5.1. FPs as markers in mechanobiology2.5.2. Imaging technologies using FPs; 2.5.2.1. Live cell imaging; 2.5.2.2. Fluorescent resonance energy transfer (FRET); 2.5.2.3. Fluorescent recovery after photobleaching (FRAP); 2.5.2.4. Confocal and two-photon microscopy; 3. Molecular and Genetic Techniques to Study Mechanobiology; 3.1. Analysis of mRNA Expression; 3.1.1. Microarray analysis; 3.1.2. Transcriptomics: Total RNA and mRNA sequencing; 3.1.3. Quantitative real time PCR; 3.1.4. In situ hybridization; 3.2. Analysis at the Protein Level; 3.2.1. Immunohistochemistry; 3.2.2. Western blotting
  • 3.2.3. ELISA3.3. Techniques for Editing Gene Function and Altering the Mechanical Environment; 3.3.1. In vitro mutagenesis-Mice; 3.3.2. CRISPR; 3.3.3. In ovo/ex ovo manipulation-Chick; 4. Computational Techniques in Mechanobiology; 4.1. Computational Modeling; 4.1.1. Computational fluid dynamics; 4.1.2. FE analysis; 4.1.3. Multiscale and multiphysics modeling; 4.2. Image Analysis; 4.2.1. Digital image correlation; 4.2.2. Particle image velocimetry; 5. Future Perspectives; References; Chapter 2: Cell geometric control of nuclear dynamics and its implications; 1. Introduction
  • 1.1. Physical Link Between Nucleus and Cytoskeleton1.2. Microrheology of the Nucleus; 1.3. Boundary Conditions; 2. Nuclear Translational Motion; 2.1. Image Processing and Computational Methods; 2.2. Geometric Control of Nuclear Translation; 2.3. Role of Cytoskeleton in Nuclear Translation; 3. Nuclear Rotational Motion; 3.1. Image Processing and Computational Methods; 3.2. Cell Geometric Regulation of Nuclear Rotation; 3.3. Role of Cytoskeleton in Nuclear Rotation; 3.4. Implications of Nuclear Rotation in Cellular Functions; 4. Nuclear Envelope Fluctuations