|
|
|
|
LEADER |
00000cam a2200000 i 4500 |
001 |
SCIDIR_on1041142859 |
003 |
OCoLC |
005 |
20231120010302.0 |
006 |
m o d |
007 |
cr cnu---unuuu |
008 |
180620s2018 enk o 001 0 eng d |
040 |
|
|
|a OPELS
|b eng
|e rda
|e pn
|c OPELS
|d N$T
|d EBLCP
|d YDX
|d MERER
|d OCLCQ
|d NLE
|d INT
|d UPM
|d OCLCQ
|d UKMGB
|d U3W
|d LVT
|d OCLCQ
|d D6H
|d KNOVL
|d OCLCQ
|d UX1
|d S2H
|d OCLCO
|d OCLCQ
|d OCLCO
|d K6U
|d OCLCQ
|d SFB
|d OCLCQ
|
016 |
7 |
|
|a 018922620
|2 Uk
|
019 |
|
|
|a 1042084639
|
020 |
|
|
|a 9780128131138
|q (electronic bk.)
|
020 |
|
|
|a 0128131136
|q (electronic bk.)
|
020 |
|
|
|z 9780128130599
|q (print)
|
020 |
|
|
|z 0128130598
|
035 |
|
|
|a (OCoLC)1041142859
|z (OCoLC)1042084639
|
050 |
|
4 |
|a TJ1191
|
072 |
|
7 |
|a TEC
|x 040000
|2 bisacsh
|
082 |
0 |
4 |
|a 671.3/5
|2 23
|
100 |
1 |
|
|a Luo, Xichun,
|e author.
|
245 |
1 |
0 |
|a Hybrid machining :
|b theory, methods, and case studies /
|c Xichun Luo, Yi Qin.
|
264 |
|
1 |
|a London, United Kingdom :
|b Academic Press, an imprint of Elsevier,
|c 2018.
|
300 |
|
|
|a 1 online resource
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Includes index.
|
588 |
0 |
|
|a Online resource; title from PDF title page (ScienceDirect, viewed June 20, 2018).
|
505 |
0 |
|
|a Front Cover; Hybrid Machining; Copyright Page; Contents; List of Contributors; Short Biographies; Preface; 1 Introduction to Hybrid Machining Technology; 1.1 Overview of Machining Technology; 1.1.1 Introduction to Machining Processes; 1.1.2 Advances and New Challenges; 1.2 Concept, Definition, and Classification of Hybrid Machining Processes; 1.3 Major Elements of Hybrid Machining Technology; 1.3.1 Hybrid Machine Tools; 1.3.2 Hybrid Tooling; 1.3.3 Hybrid Machining Processes; 1.3.4 Metrology System; 1.3.5 Work Handling System; 1.3.6 Process Modeling Technique.
|
505 |
8 |
|
|a 1.4 Benefits of Hybrid Machining Technology1.5 Challenges and Opportunities; 1.6 Concluding Remarks; 1.6.1 Development of Specific Multiaxis Hybrid Machine Tools; 1.6.2 Opportunities for Improving Process Monitoring Techniques; 1.6.3 Development of On-Machine Tool Fabrication and Metrology Techniques; 1.6.4 Establishment of Novel Processes; 1.6.5 Cost-Effectiveness Study; 1.6.6 Industrial Implementation; Acknowledgment; References; 2 Overview of Hybrid Machining Processes; 2.1 Introduction; 2.2 Design Principle and Methodology for Hybrid Machining Processes; 2.3 Assisted Hybrid Machining.
|
505 |
8 |
|
|a 2.3.1 Vibration-Assisted Machining2.3.2 Laser-Assisted Machining; 2.3.3 Magnetic Field-Assisted Machining; 2.3.4 External Electric Field-Assisted Machining; 2.3.5 Fluid-Assisted Machining; 2.4 Combined Hybrid Machining; 2.4.1 Electrochemical Discharge Machining; 2.4.2 Electrochemical Grinding; 2.4.3 Electrodischarge Grinding and Abrasive-EDM Processes; 2.4.4 Laser-Chemical/Electrochemical Machining; 2.4.5 Laser-Waterjet Machining; 2.4.6 Mechano-Electrochemical Machining; 2.4.7 Abrasive-Waterjet Milling; 2.5 Combination of Controlled Processes; 2.5.1 Grind Hardening; 2.6 Summary; References.
|
505 |
8 |
|
|a 3 Laser-Assisted Machining3.1 Introduction; 3.2 Laser-Assisted Machining Processes; 3.2.1 Laser-Assisted Turning; 3.2.2 Laser-Assisted Milling/Grinding; 3.2.3 Laser-Assisted Jet Electrochemical Micromachining; 3.2.4 Laser-Assisted Waterjet Machining; 3.2.5 Summary of Laser-Assisted Machining Processes; 3.3 Laser Sources for Laser-Assisted Machining; 3.4 Thermal Modeling; 3.5 Process Control and Optimization; 3.6 Characteristics of Laser-Assisted Machining of Hard-to-Machine Materials; 3.6.1 Metals; 3.6.1.1 Titanium Alloys; 3.6.1.2 Nickel-Based Super Alloys.
|
505 |
8 |
|
|a 3.6.1.3 Ion-Based Difficult-to-Machine Materials3.6.1.4 Ceramics; 3.6.1.5 Composites; 3.7 Case Study-Laser-Assisted Grinding of Ceramics; 3.7.1 Laser Source for Laser-Assisted Grinding; 3.7.2 Thermal Conduction for Laser Hearing; 3.7.3 Laser-Assisted Grinding Trial; 3.7.4 Results and Discussions; 3.7.4.1 Groove Depth; 3.7.4.2 Grinding Force; 3.7.4.3 Surface Roughness and Microstructure of the Machined Surface; 3.7.4.4 Subsurface Damage; 3.7.5 Summary of the Laser-Assisted Process Development; 3.8 Concluding Remarks; Acknowledgement; References; 4 Vibration-Assisted Milling; 4.1 Introduction.
|
520 |
8 |
|
|a Annotation
|b Hybrid Machining: Theory, Methods, and Case Studies covers the scientific fundamentals, techniques, applications and real-world descriptions of emerging hybrid machining technology. This field is advancing rapidly in industrial and academic contexts, creating a great need for the fundamental and technical guidance that this book provides. The book includes discussions of basic concepts, process design principles, standard hybrid machining processes, multi-scale modeling approaches, design, on-machine metrology and work handling systems. Readers interested in manufacturing systems, product design or machining technology will find this one-stop guide to hybrid machining the ideal reference.
|
650 |
|
0 |
|a Machining
|x Technological innovations.
|
650 |
|
6 |
|a Usinage
|0 (CaQQLa)201-0010891
|x Innovations.
|0 (CaQQLa)201-0379286
|
650 |
|
7 |
|a TECHNOLOGY & ENGINEERING
|x Technical & Manufacturing Industries & Trades.
|2 bisacsh
|
700 |
1 |
|
|a Qin, Y.
|q (Yi),
|e author.
|
776 |
0 |
8 |
|i Print version:
|a Luo, Xichun.
|t Hybrid machining.
|d London, United Kingdom : Academic Press, an imprint of Elsevier, 2018
|z 0128130598
|z 9780128130599
|w (OCoLC)1010506368
|
856 |
4 |
0 |
|u https://sciencedirect.uam.elogim.com/science/book/9780128130599
|z Texto completo
|