|
|
|
|
LEADER |
00000cam a2200000 i 4500 |
001 |
SCIDIR_on1041140940 |
003 |
OCoLC |
005 |
20231120010301.0 |
006 |
m o d |
007 |
cr cnu---unuuu |
008 |
180620s2018 ne ob 001 0 eng d |
040 |
|
|
|a OPELS
|b eng
|e rda
|e pn
|c OPELS
|d N$T
|d YDX
|d EBLCP
|d MERER
|d OCLCF
|d OCLCQ
|d NLE
|d UPM
|d UKMGB
|d U3W
|d LVT
|d D6H
|d DKU
|d OCLCQ
|d S2H
|d OCLCO
|d OCLCA
|d VT2
|d OCLCO
|d OCLCQ
|d OCLCO
|d K6U
|d OCLCQ
|d SFB
|d OCLCQ
|d OCLCO
|
015 |
|
|
|a GBB890534
|2 bnb
|
016 |
7 |
|
|a 018870089
|2 Uk
|
019 |
|
|
|a 1042397786
|a 1043409083
|a 1229574441
|a 1235836466
|
020 |
|
|
|a 9780128040997
|q (electronic bk.)
|
020 |
|
|
|a 0128040998
|q (electronic bk.)
|
020 |
|
|
|z 9780128040225
|q (print)
|
020 |
|
|
|z 012804022X
|
035 |
|
|
|a (OCoLC)1041140940
|z (OCoLC)1042397786
|z (OCoLC)1043409083
|z (OCoLC)1229574441
|z (OCoLC)1235836466
|
050 |
|
4 |
|a TA459
|
072 |
|
7 |
|a TEC
|x 009000
|2 bisacsh
|
072 |
|
7 |
|a TEC
|x 035000
|2 bisacsh
|
082 |
0 |
4 |
|a 620.1/6
|2 23
|
100 |
1 |
|
|a Natarajan, K. A.
|c (Emeritus Professor of Materials Engineering),
|e author.
|
245 |
1 |
0 |
|a Biotechnology of metals :
|b principles, recovery methods and environmental concerns /
|c K.A. Natarajan.
|
264 |
|
1 |
|a Amsterdam, Netherlands :
|b Elsevier,
|c 2018.
|
300 |
|
|
|a 1 online resource
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Includes index.
|
588 |
0 |
|
|a Online resource; title from PDF title page (ScienceDirect, viewed June 20, 2018).
|
505 |
0 |
|
|a Front Cover; Biotechnology of Metals; Copyright Page; Contents; Preface; 1 Introduction-Status and Scope of Metals Biotechnology; References; 2 Biotechnology-Materials Interface: Biogenesis and Biomineralization; Biotechnology-Materials Interface; Biomimetics and Biomaterials; Biomineralization and Biogenesis Relevant to Ore Deposits; Sulfide Minerals; Iron Ores; Biomineralization of Bauxites; Gold and Platinum; Clays; Ocean Ferromanganese Nodules; Limestone, Silica, Phosphorous, and Arsenic; References; 3 Microbiological Aspects of Leaching Microorganisms; Bioleaching Microorganisms
|
505 |
8 |
|
|a Microbial Communities in Mining EnvironmentsGeneral Characteristics, Physiology, and Molecular Aspects of A. ferrooxidans; A. thiooxidans; A. caldus; Leptospirillum; Acidiphilium; Sulfobacillus; Metallosphaera; Acidianus; A. albertensis; Acidithiobacillus ferrivorans; Acidithiobacillus ferridurans; Acidithiobacillus ferriphilus; References; Further Reading; 4 Bioleaching Mechanisms; Is Bacterial Attachment Necessary?; Electrochemical Aspects; Metal Toxicity and Development of Metal-Tolerant Strains; Highest Tolerance Achieved Through Adaptation (g/L); Copper Toxicity; Arsenic Toxicity
|
505 |
8 |
|
|a Development of Multimetal-Tolerant Strains of A. ferrooxidansReferences; 5 Methods in Biohydrometallurgy and Developments: Dump, Heap, In Situ, and Stirred Tank Bioleaching; Historical Perspectives; Methods in Biohydrometallurgy; Heap Bioleaching; Heap microbiology; Dump Leaching; In Situ Leaching; Role of Microorganisms in ISL; Stirred Tank Bioleaching; Microbiological Aspects Relevant to Heap and Stirred Tank Reactors; Laboratory and Bench-Scale Tests for Developing Commercially Viable Bioleaching Processes; References; 6 Bioleaching of Copper and Uranium; Bioleaching of Copper
|
505 |
8 |
|
|a Heap BioleachingCerro Colorado; Quebrada Blanca; Ivan Mine; Chuquicamata; Carmen de Andacollo; Dos Amigos; La Escondida; Spence; Prospects for Bioleaching of Chalcopyrite Ores and Concentrates; Microbial Succession and Dynamics; Technology Developments in Heap and Stirred Tank Bioleaching for Copper Ores and Concentrates; Bacterial Thin-Layer Leaching; Geocoat and Geoleach; Basic Aspects of the Geocoat Process; The StickiBugs Process; HotHeap; SmartColumn for High-Temperature Heaps; HeapStar Software; Heat Generation Within Bioheaps; Stirred Tank Bioleaching for Copper Concentrates
|
505 |
8 |
|
|a Development of Heap Bioleach Technology for Chalcopyrite OresBioleaching of Uranium; Uranium Bioleaching Mechanisms; Microbially Mediated Redox Reactions Relevant to Uranium Extraction; Microbial Uranium Dissolution and Precipitation; Microbial Diversity and Biocatalyzed Reactions; Methods for Uranium Bioleaching; Developments in Heap and Stope Bioleaching for Uranium; Feasibility Studies on Different Types of Uranium Ores; Uranium Contamination and Bioremediation; References; 7 Bioleaching of Zinc, Nickel, and Cobalt; Bioleaching of Zinc Sulfide Ores and Concentrates; Indirect Bioleaching
|
504 |
|
|
|a Includes bibliographical references and index.
|
650 |
|
0 |
|a Metals
|x Biotechnology.
|
650 |
|
6 |
|a M�etaux
|0 (CaQQLa)201-0005248
|x Biotechnologie.
|0 (CaQQLa)201-0378829
|
650 |
|
7 |
|a TECHNOLOGY & ENGINEERING
|x Engineering (General)
|2 bisacsh
|
650 |
|
7 |
|a TECHNOLOGY & ENGINEERING
|x Reference.
|2 bisacsh
|
650 |
|
7 |
|a Metals
|x Biotechnology
|2 fast
|0 (OCoLC)fst01751654
|
776 |
0 |
8 |
|i Print version:
|a Natarajan, K.A., Prof.
|t Biotechnology of metals.
|d Amsterdam, Netherlands : Elsevier, 2018
|z 012804022X
|z 9780128040225
|w (OCoLC)1010589232
|
856 |
4 |
0 |
|u https://sciencedirect.uam.elogim.com/science/book/9780128040225
|z Texto completo
|