Cargando…

Emerging Nanotechnologies in Immunology : the Design, Applications and Toxicology of Nanopharmaceuticals and Nanovaccines /

Emerging Nanotechnologies in Immunology: The Design, Applications and Toxicology of Nanopharmaceuticals and Nanovaccines aims to deliver a systematic and comprehensive review of data concerning the nature of interaction and nano-related risks between the nanopharmaceuticals currently in the pipeline...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Shegokar, Ranjita (Editor ), Souto, Eliana B. (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Amsterdam : Elsevier, 2018.
Colección:Micro & nano technologies.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Front Cover; Emerging Nanotechnologies in Immunology; Copyright Page; Contents; List of Contributors; Biography; Preface; Key Features; 1 Nanopharmaceuticals in immunology: What's new in research?; 1.1 Introduction; 1.2 Application of Nanopharmaceuticals for Disease Treatment; 1.3 Evolution of Nanopharmaceuticals for Disease Treatment; 1.3.1 Cancer; 1.3.2 Immunotherapy; 1.3.3 Vaccines; 1.3.4 HIV/AIDS; 1.3.5 Tuberculosis and Malaria; 1.4 Conclusion; References; 2 Skin delivery of antimicrobial peptides; Abbreviations; 2.1 Introduction; 2.2 AMPs
  • Chemistry, Antimicrobial and Antitumor Effects.
  • 2.3 Human AMPs and Proteins2.3.1 Defensins; 2.3.2 Cathelicidins; 2.3.3 Psoriasin; 2.4 AMPs From Non-human Vertebrates and From Invertebrates; 2.4.1 Magainins and Temporins
  • AMPs From Frogs; 2.4.2 AMPs From Insects; 2.5 AMPs Regulate Homeostasis in Healthy and Diseased Skin; 2.6 Atopic Dermatitis; 2.6.1 Atopic Dermatitis and the AMPs; 2.6.2 Reconstructed Atopic Skin
  • AMPs and Bacterial Growth; 2.7 Psoriasis; 2.8 Acne; 2.9 Wound Healing/Keloid Formation; 2.10 Topical Use of AMPs; 2.11 Nanoparticle-Enhanced Peptide Penetration Into the Skin; 2.12 Penetration Enhancers for Protein Delivery.
  • 2.13 Nanoparticle Enforced Peptide Effects2.13.1 Antibacterial Effects; 2.13.2 Nanoparticles for Improved Antipsoriatic Therapy; 2.14 Conclusion; References; Further Reading; 3 Skin penetration of nanoparticles; 3.1 Introduction; 3.2 Skin Structure and Function; 3.2.1 Skin Structure; 3.2.1.1 Epidermis; 3.2.1.2 Dermis; 3.2.1.3 Hypodermis (subcutis); 3.2.2 Derivative Structure of the Skin; 3.2.2.1 Hair; 3.2.2.2 Nails; 3.2.2.3 Sebaceous glands; 3.2.2.4 Sweat glands; 3.3 Skin Functions; 3.3.1 Mechanism of Skin Penetration; 3.3.1.1 Transappendageal route; 3.3.1.2 Transepidermal route.
  • 3.3.1.3 Translocation3.4 Sources of NPs; 3.4.1 Significance of Skin Penetration Studies of NPs; 3.4.1.1 Designing novel topical and transdermal nanocarriers and biomedical diagnostic agents; 3.4.1.2 Understanding NPs health hazards; 3.4.2 Factors Affecting Skin Penetration of NPs; 3.4.2.1 Physicochemical properties of the penetrant; 3.4.2.1.1 Penetrant formulation; 3.4.2.1.2 Size and surface properties of penetrant; 3.4.2.1.3 Penetrant surface polarity; 3.4.2.1.4 Penetrant shape; 3.4.2.2 Vehicle effects; 3.4.2.2.1 Microemulsions; 3.4.2.2.2 Nanoemulsions.
  • 3.4.2.2.3 Solid Lipid NPs and Nanostructured Lipid Carriers3.4.2.2.4 Liposomes; 3.4.2.2.5 Niosomes; 3.4.2.2.6 Transfersomes and ethosomes; 3.4.2.3 Surface area, dose, duration, and frequency of exposure; 3.4.2.4 Distribution; 3.4.2.5 Subanatomical pathways (skin appendages); 3.4.2.6 Skin surface condition; 3.4.2.6.1 Skin health and integrity; 3.4.2.6.2 Hydration; 3.4.2.6.3 Occlusion; 3.4.2.6.4 Temperature; 3.4.2.6.5 Other parameters; 3.4.2.7 Additional factors of skin penetration and permeation; 3.4.2.7.1 Different body regions and hair follicle volume and distribution; 3.4.2.7.2 Flexed skin.