Cargando…

Statistical postprocessing of ensemble forecasts /

Statistical Postprocessing of Ensemble Forecasts brings together chapters contributed by international subject-matter experts describing the current state of the art in the statistical postprocessing of ensemble forecasts. The book illustrates the use of these methods in several important applicatio...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Vannitsem, St�ephane (Editor ), Wilks, Daniel S. (Editor ), Messner, Jakob (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Amsterdam, Netherlands : Elsevier, [2018]
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 SCIDIR_on1036985964
003 OCoLC
005 20231120010255.0
006 m o d
007 cr cnu|||unuuu
008 180521t20182018ne a ob 001 0 eng d
040 |a N$T  |b eng  |e rda  |e pn  |c N$T  |d N$T  |d YDX  |d EBLCP  |d OPELS  |d OCLCF  |d UAB  |d COO  |d NRC  |d MERER  |d NLE  |d INT  |d SNK  |d UKMGB  |d OCLCQ  |d U3W  |d ITD  |d OCLCQ  |d LVT  |d OCLCQ  |d D6H  |d LQU  |d OCLCQ  |d S2H  |d OCLCO  |d OCLCQ  |d OCLCO  |d K6U  |d OCLCQ  |d OCLCO 
016 7 |a 018864416  |2 Uk 
019 |a 1037294731  |a 1037806686  |a 1105170194  |a 1105575169 
020 |a 9780128122488  |q (electronic bk.) 
020 |a 012812248X  |q (electronic bk.) 
020 |z 9780128123720 
020 |z 0128123729 
035 |a (OCoLC)1036985964  |z (OCoLC)1037294731  |z (OCoLC)1037806686  |z (OCoLC)1105170194  |z (OCoLC)1105575169 
050 4 |a QC995 
072 7 |a SCI  |x 030000  |2 bisacsh 
072 7 |a SCI  |x 031000  |2 bisacsh 
082 0 4 |a 551.63  |2 23 
245 0 0 |a Statistical postprocessing of ensemble forecasts /  |c edited by St�ephane Vannitsem, Daniel S. Wilks, Jakob W. Messner. 
264 1 |a Amsterdam, Netherlands :  |b Elsevier,  |c [2018] 
264 4 |c �2018 
300 |a 1 online resource :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
504 |a Includes bibliographical references and index. 
588 0 |a Vendor-supplied metadata. 
505 0 |a Front Cover; Statistical Postprocessing of Ensemble Forecasts; Copyright; Contents; Contributors; Preface; Chapter 1: Uncertain Forecasts From Deterministic Dynamics; 1.1. Sensitivity to Initial Conditions, or ``Chaos��; 1.2. Uncertainty and Probability in ``Deterministic�� Predictions; 1.3. Ensemble Forecasting; 1.4. Postprocessing Individual Dynamical Forecasts; 1.5. Postprocessing Ensemble Forecasts: Overview of This Book; References; Chapter 2: Ensemble Forecasting and the Need for Calibration; 2.1. The Dynamical Weather Prediction Problem; 2.1.1. Historical Background. 
505 8 |a 2.1.2. Observations2.1.3. The Equations of Motion for the Atmosphere; 2.1.4. Computation of the Initial Conditions (Analysis); 2.2. The Chaotic Nature of the Atmosphere; 2.3. From Single to Ensemble Forecasts; 2.3.1. Forecast Reliability and Accuracy; 2.3.2. Are Ensemble Forecasts More Valuable than a Single Forecast?; 2.4. Sources of Forecast Errors; 2.5. Characteristics of the Operational Global Ensemble Systems; 2.6. The Value of a Reforecast Suite; 2.7. A Look Into the Future; 2.8. Summary: The Key Messages of This Chapter; References; Chapter 3: Univariate Ensemble Postprocessing. 
505 8 |a 3.1. Introduction3.2. Nonhomogeneous Regressions, and Other Regression Methods; 3.2.1. Nonhomogeneous Gaussian Regression (NGR); 3.2.2. Nonhomogeneous Regressions With More Flexible Predictive Distributions; 3.2.3. Truncated Nonhomogeneous Regressions; 3.2.4. Censored Nonhomogeneous Regressions; 3.2.5. Logistic Regression; 3.3. Bayesian Model Averaging, and Other ``Ensemble Dressing�� Methods; 3.3.1. Bayesian Model Averaging (BMA); 3.3.2. Other Ensemble Dressing Methods; 3.4. Fully Bayesian Ensemble Postprocessing Approaches; 3.5. Nonparametric Ensemble Postprocessing Methods. 
505 8 |a 3.5.1. Rank Histogram Recalibration3.5.2. Quantile Regression; 3.5.3. Ensemble Dressing; 3.5.4. Individual Ensemble-Member Adjustments; 3.5.5. ``Statistical Learning�� Methods for Ensemble Postprocessing; 3.6. Comparisons Among Methods; References; Chapter 4: Ensemble Postprocessing Methods Incorporating Dependence Structures; 4.1. Introduction; 4.2. Dependence Modeling Via Copulas; 4.2.1. Copulas and Sklar's Theorem; 4.2.2. Parametric, in Particular Gaussian, Copulas; 4.2.3. Empirical Copulas; 4.3. Parametric Multivariate Approaches; 4.3.1. Intervariable Dependencies. 
505 8 |a 4.3.2. Spatial Dependencies4.3.3. Temporal Dependencies; 4.4. Nonparametric Multivariate Approaches; 4.4.1. Empirical Copula-Based Ensemble Postprocessing; 4.4.2. Ensemble Copula Coupling (ECC); 4.4.3. Schaake Shuffle-Based Approaches; 4.5. Univariate Approaches Accounting for Dependencies; 4.5.1. Spatial Dependencies; 4.5.2. Temporal Dependencies; 4.6. Discussion; References; Chapter 5: Postprocessing for Extreme Events; 5.1. Introduction; 5.2. Extreme-Value Theory; 5.2.1. Generalized Extreme-Value Distribution; 5.2.2. Peak-Over-Threshold Approach; 5.2.3. Nonstationary Extremes. 
520 |a Statistical Postprocessing of Ensemble Forecasts brings together chapters contributed by international subject-matter experts describing the current state of the art in the statistical postprocessing of ensemble forecasts. The book illustrates the use of these methods in several important applications including weather, hydrological and climate forecasts, and renewable energy forecasting. After an introductory section on ensemble forecasts and prediction systems, the second section of the book is devoted to exposition of the methods available for statistical postprocessing of ensemble forecasts: univariate and multivariate ensemble postprocessing are first reviewed by Wilks (Chapters 3), then Schefzik and M�i�A�ller (Chapter 4), and the more specialized perspective necessary for postprocessing forecasts for extremes is presented by Friederichs, Wahl, and Buschow (Chapter 5). The second section concludes with a discussion of forecast verification methods devised specifically for evaluation of ensemble forecasts (Chapter 6 by Thorarinsdottir and Schuhen). The third section of this book is devoted to applications of ensemble postprocessing. Practical aspects of ensemble postprocessing are first detailed in Chapter 7 (Hamill), including an extended and illustrative case study. Chapters 8 (Hemri), 9 (Pinson and Messner), and 10 (Van Schaeybroeck and Vannitsem) discuss ensemble postprocessing specifically for hydrological applications, postprocessing in support of renewable energy applications, and postprocessing of long-range forecasts from months to decades. Finally, Chapter 11 (Messner) provides a guide to the ensemble-postprocessing software available in the R programming language, which should greatly help readers implement many of the ideas presented in this book. Edited by three experts with strong and complementary expertise in statistical postprocessing of ensemble forecasts, this book assesses the new and rapidly developing field of ensemble forecast postprocessing as an extension of the use of statistical corrections to traditional deterministic forecasts. Statistical Postprocessing of Ensemble Forecasts is an essential resource for researchers, operational practitioners, and students in weather, seasonal, and climate forecasting, as well as users of such forecasts in fields involving renewable energy, conventional energy, hydrology, environmental engineering, and agriculture. 
650 0 |a Weather forecasting. 
650 6 |a Temps (M�et�eorologie)  |x Pr�evision.  |0 (CaQQLa)201-0017883 
650 7 |a SCIENCE  |x Earth Sciences  |x Geography.  |2 bisacsh 
650 7 |a SCIENCE  |x Earth Sciences  |x Geology.  |2 bisacsh 
650 7 |a Weather forecasting  |2 fast  |0 (OCoLC)fst01173142 
700 1 |a Vannitsem, St�ephane,  |e editor. 
700 1 |a Wilks, Daniel S.,  |e editor. 
700 1 |a Messner, Jakob,  |e editor. 
776 0 8 |i Print version:  |z 0128123729  |z 9780128123720  |w (OCoLC)1023538594 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/book/9780128123720  |z Texto completo