Cargando…

EEG-based diagnosis of Alzheimer disease : a review and novel approaches for feature extraction and classification techniques /

EEG-Based Diagnosis of Alzheimer Disease: A Review and Novel Approaches for Feature Extraction and Classification Techniques provides a practical and easy-to-use guide for researchers in EEG signal processing techniques, Alzheimer's disease, and dementia diagnostics. The book examines different...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Kulkarni, Nilesh (Autor), Bairagi, Vinayak (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: London : Academic Press, [2018]
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 SCIDIR_on1031373552
003 OCoLC
005 20231120010251.0
006 m o d
007 cr cnu|||unuuu
008 180416s2018 enka ob 001 0 eng d
040 |a N$T  |b eng  |e rda  |e pn  |c N$T  |d N$T  |d EBLCP  |d OPELS  |d OCLCF  |d D6H  |d MERER  |d OCLCQ  |d INT  |d NLE  |d OCLCQ  |d U3W  |d LVT  |d ITD  |d OCLCQ  |d UKAHL  |d OCLCQ  |d S2H  |d OCLCO  |d UX1  |d VT2  |d OCLCA  |d OCLCQ  |d OCLCO  |d K6U  |d OCLCQ  |d SFB  |d OCLCQ  |d OCLCO 
019 |a 1235837878 
020 |a 9780128153932  |q (electronic bk.) 
020 |a 0128153938  |q (electronic bk.) 
020 |a 9780128153925  |q (electronic bk.) 
020 |a 012815392X  |q (electronic bk.) 
035 |a (OCoLC)1031373552  |z (OCoLC)1235837878 
050 4 |a RC523 
060 4 |a 2018 G-221 
060 4 |a WT 156 
072 7 |a HEA  |x 039000  |2 bisacsh 
072 7 |a MED  |x 014000  |2 bisacsh 
072 7 |a MED  |x 022000  |2 bisacsh 
072 7 |a MED  |x 112000  |2 bisacsh 
072 7 |a MED  |x 045000  |2 bisacsh 
082 0 4 |a 616.831075  |2 23 
100 1 |a Kulkarni, Nilesh,  |e author. 
245 1 0 |a EEG-based diagnosis of Alzheimer disease :  |b a review and novel approaches for feature extraction and classification techniques /  |c Nilesh Kulkarni and Vinayak Bairagi. 
264 1 |a London :  |b Academic Press,  |c [2018] 
300 |a 1 online resource :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
504 |a Includes bibliographical references and index. 
588 0 |a Online resource; title from PDF title page (EBSCO, viewed April 17, 2018). 
505 0 |a Intro; Title page; Table of Contents; Copyright; Dedication; Acknowledgments; Chapter One: Introduction; Abstract; 1.1. Alzheimer disease; 1.2. Causes and symptoms of the disease; 1.3. Stages and clinical diagnosis of Alzheimer's disease; 1.4. Importance of diagnosis of Alzheimer's disease and its impact on society; 1.5. A brief review on different methods used for diagnosis of Alzheimer disease; Summary; Chapter Two: Electroencephalogram and Its Use in Clinical Neuroscience; Abstract; 2.1. EEG recording and measurement; 2.2. EEG rhythms. 
505 8 |a 2.3. Early diagnosis of Alzheimer's disease by means of EEG signalsSummary; Chapter Three: Role of Different Features in Diagnosis of Alzheimer Disease; Abstract; 3.1. Introduction; 3.2. What is feature extraction?; 3.3. Need of feature extraction; 3.4. Linear features; 3.5. Conclusions; Chapter Four: Use of Complexity Features for Diagnosis of Alzheimer Disease; Abstract; 4.1. Introduction; 4.2. Use of new complexity features in Alzheimer's disease diagnosis; 4.3. Discussion and conclusion; Summary; Chapter Five: Classification Algorithms in Diagnosis of Alzheimer's Disease; Abstract. 
505 8 |a 5.1. IntroductionSummary; Chapter Six: Results, Discussions, and Research Challenges; Abstract; 6.1. Results; 6.2. Conclusions; 6.3. Contribution; 6.4. Limitations of the study; 6.5. Future scope; Index. 
520 |a EEG-Based Diagnosis of Alzheimer Disease: A Review and Novel Approaches for Feature Extraction and Classification Techniques provides a practical and easy-to-use guide for researchers in EEG signal processing techniques, Alzheimer's disease, and dementia diagnostics. The book examines different features of EEG signals used to properly diagnose Alzheimer's Disease early, presenting new and innovative results in the extraction and classification of Alzheimer's Disease using EEG signals. This book brings together the use of different EEG features, such as linear and nonlinear features, which play a significant role in diagnosing Alzheimer's Disease. 
650 0 |a Alzheimer's disease  |x Diagnosis. 
650 0 |a Electroencephalography. 
650 1 2 |a Alzheimer Disease  |x diagnosis  |0 (DNLM)D000544Q000175 
650 2 2 |a Electroencephalography  |x methods  |0 (DNLM)D004569Q000379 
650 2 |a Electroencephalography  |0 (DNLM)D004569 
650 6 |a �Electroenc�ephalographie.  |0 (CaQQLa)201-0021971 
650 7 |a HEALTH & FITNESS  |x Diseases  |x General.  |2 bisacsh 
650 7 |a MEDICAL  |x Clinical Medicine.  |2 bisacsh 
650 7 |a MEDICAL  |x Diseases.  |2 bisacsh 
650 7 |a MEDICAL  |x Evidence-Based Medicine.  |2 bisacsh 
650 7 |a MEDICAL  |x Internal Medicine.  |2 bisacsh 
650 7 |a Alzheimer's disease  |x Diagnosis  |2 fast  |0 (OCoLC)fst00806537 
650 7 |a Electroencephalography  |2 fast  |0 (OCoLC)fst00906445 
700 1 |a Bairagi, Vinayak,  |e author. 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/book/9780128153925  |z Texto completo