Cargando…

Role of materials science in food bioengineering /

The Role of Materials Science in Food Bioengineering, Volume 19 in the Handbook of Food Bioengineering, presents an up-to-date review of the most recent advances in materials science, further demonstrating its broad applications in the food industry and bioengineering. Many types of materials are de...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Formato: Electrónico eBook
Idioma:Inglés
Publicado: London : Academic Press, �2018.
Colección:Handbook of food bioengineering ; v. 19.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Machine generated contents note: ch. 1 New Trends in Food Technology for Green Recovery of Bioactive Compounds from Plant Materials / Suzana Rimac-Brncic
  • 1. Introduction
  • 1.1. Biologically Active Compounds
  • 2. Review of Extraction Methods of Bioactive Compounds
  • 2.1. New Extraction Techniques of Bioactive Compounds
  • 3. Conclusions
  • References
  • ch. 2 Different Bioengineering Approaches on Production of Bioflavor Compounds / Yonca K. Yuceer
  • 1. Introduction
  • 2. Biotechnological Processes for the Production of Bioflavor and Fragrance Compounds
  • 2.1. Production of Flavors and Fragrances by Plant Cell or Tissue Cultures
  • 2.2. Microbial Fermentation (De novo Synthesis)
  • 2.3. Microbial and Enzymatic Bioconversion/Biotransformation
  • 3. Bioengineering Approaches Used for the Production of Bioflavor Compounds: Current State and Prospects
  • 3.1. Bioprocess Designs With Different Bioreactor Configurations and Fermentation Strategies for Production of Bioflavor Compounds
  • 3.2. Bioengineering Approaches Used for Scaling Up and Downstream Processes of Bioflavor Compounds
  • 3.3. Statistical Optimization and Mathematical Modeling Studies Used in Bioflavor Production Processes
  • 3.4. Requirements and Perspectives
  • 4. Conclusions
  • References
  • ch. 3 Biocompatibility and Toxicity of Allotropic Forms of Carbon in Food Packaging / Pawel K. Zarzycki
  • 1. Introduction
  • 2. Structure of Allotropic Forms of Carbon
  • 2.1. Diamond
  • 2.2. Graphite
  • 2.3. Carbine
  • 3. Others Forms of Graphite
  • 3.1. Graphene
  • 3.2. Carbon Nanotubes
  • 3.3. Fullerenes
  • 4. Biocompatibility and Toxicity of Nanocrystalline Diamond Coatings
  • 5. Biocompatibility and Bioactivity of Allotropic Forms of Carbon
  • 6. Toxicity of Carbon Nanomaterials in Food Nanopackaging
  • 6.1. Nanomaterials
  • 6.2. Toxicity Testing Strategy of Engineered Nanomaterials
  • 6.3. Carbon Nanomaterials
  • 7. Functionalization of Nanodiamonds by Plasma-Chemical and Chemical Methods for Use on the Food Bioactive Packaging
  • 8. Nanotechnology in Food Packaging
  • 9. Conclusions
  • References
  • ch. 4 Fabrication of Functional Electrospun Nanostructures for Food Applications / Conrad O. Perera
  • 1. Introduction
  • 1.1. Electrospinning
  • 1.2. Electrospraying
  • 1.3. Strategies for Controlling the Electrospinning Fabrication Process
  • 1.4. Different Approaches to Electrospinning for a Defined Fiber Structure
  • 2. Encapsulation and Immobilization of Functional Food Additives
  • 2.1. Scaffolding Materials
  • 2.2. Materials Derived From Natural Sources
  • 2.3. Polysaccharides
  • 2.4. Protein
  • 2.5. Materials Derived From Synthetic Sources
  • 3. Blending of Polymers
  • 4. Scaffolding Materials
  • 4.1. Scaffolding Materials as a Carrier for Functional Food Additives
  • 5. Characterization of Electrospun Nanofibers
  • 5.1. Determination of Performance of Electrospun Nanostructures
  • 5.2. Determination of Physicochemical Properties
  • 6. Functionalization of Polymer Nanofibers
  • 6.1. Blending and Physical Coating
  • 6.2. Molecular Immobilization
  • 6.3. Layer-by-Layer Assembly
  • 6.4. Plasma Treatment
  • 6.5. Chemical Treatment
  • 6.6. Graft Copolymerization
  • 7. Nanofiber Applications in Food
  • 7.1. Nanofibers as Packaging Materials
  • 7.2. Nanofibers as Surface Coatings
  • 7.3. Novel Coatings Using Nanofibers
  • 7.4. Nanofibers as Food Sensors
  • 7.5. Food Safety and Regulatory Considerations
  • 8. Conclusions
  • References
  • ch. 5 Bioactive Peptides as Functional Food Ingredients / Grisel Bersi
  • 1. Introduction
  • 2. Different Technologies for the Production of Bioactive Peptides
  • 2.1. Extraction of Peptides From Natural Sources
  • 2.2. Production by Recombinant DNA Technology
  • 2.3. Production in Cell-Free Expression Systems
  • 2.4. Production in Transgenic Animals and Plants
  • 2.5. Fermentation
  • 2.6. Chemical and Enzymatic Synthesis
  • 2.7. Novel Bioprocessing Approaches for Bioactive Peptides, Integrating-Omics Techniques and in Silico Analysis
  • 3. Bioactive Peptides: Mechanism of Action and Applications
  • 3.1. Antimicrobial Activity Peptides
  • 3.2. Antioxidative Activity Peptides
  • 3.3. Antitumoral Activity Peptides
  • 3.4. Antihypertensive Activity Peptides
  • 3.5. Antithrombotic Activity Peptides
  • 3.6. Antiadipogenic Activity Peptides
  • 3.7. Antiinflammatory Activity Peptides
  • 4. Absortion, Bioavailability, and Effectiveness of Bioactive Peptides: Strategies to Enhance Them
  • 5. Bioactive Peptides in Food Systems
  • 6. Safety of Bioactive Peptide: Regulatory Standards
  • 7. Conclusions
  • References
  • ch. 6 Potential Applications of Cyclodextrin Inclusion Complexes, Liposomes, and Drug-in-Cyclodextrin-in-Liposome in Food Industry and Packaging / Helene Greige-Gerges
  • 1. Introduction
  • 2. Applications of Free Natural Molecules in Food
  • 3. Encapsulation Systems
  • 3.1. Cyclodextrin/Drug Inclusion Complex
  • 3.2. Liposomes
  • 3.3. Drug-in-Cyclodextrin-in-Liposomes
  • 4. Characterization of Carrier Systems Loading Natural Molecules
  • 4.1. Phase Solubility
  • 4.2. Proof of Inclusion Complexes Formation
  • 4.3. Mean Size, Polydispersity Index, and Zeta Potential of Cyclodextrin-Inclusion Complexes, Liposomes, and DCLs
  • 4.4. Loading Capacity, Encapsulation, Loading, and Complexation Efficiencies
  • 4.5. Morphology
  • 4.6. Release Study
  • 4.7. Stability
  • 5. Biological Effects
  • 5.1. Antioxidant Effect
  • 5.2. Antibacterial Effect
  • 5.3. Antifungal Effect
  • 5.4. Antiviral Effect
  • 5.5. Larvicidal Effect
  • 5.6. Anticancer Effect
  • 6. Food Applications
  • 6.1. Cyclodextrin/drug-inclusion Complexes
  • 6.2. Liposomes
  • 6.3. Drug-in-Cyclodextrin-in-Liposome Systems
  • 7. Conclusions
  • References
  • ch. 7 Coacervation Technique as an Encapsulation and Delivery Tool for Hydrophobic Biofunctional Compounds / Colin J. Barrow
  • 1. Introduction
  • 2. Selection of Shell and Core Materials
  • 2.1. Selection of Shell Materials
  • 2.2. Selection of Core Materials
  • 3. Microencapsulation Process Using Complex Coacervation Technique
  • 3.1. Homogenization/Emulsification
  • 3.2. Coacervation
  • 3.3. Shell Formation/Hardening
  • 3.4. Cross-linking
  • 4. Biotechnological Applications
  • 4.1. Gelatin-Based Applications
  • 4.2. Dairy Protein-Based Applications
  • 4.3. Soy Protein-Based Applications
  • 4.4. Other Polymer-Based Applications
  • 5. Characterization of Final Microcapsule Products
  • 5.1. Morphological Structure
  • 5.2. Size Distribution
  • 5.3. Encapsulation Parameters
  • 5.4. Mechanical Strength and Flow Behavior
  • 5.5. Physicochemical Stability
  • 5.6. Bioavailability and Controlled-Release Behavior
  • 6. Conclusion and Future Trends
  • References
  • ch. 8 Food Hydrocolloids As Matrices for Edible Packaging Applications / Amparo Chiralt
  • 1. Introduction
  • 2. Polysaccharides and Proteins: Matrices for Edible Films and Coatings
  • 3. Properties of Edible Films and Coatings Based on Hydrocolloids
  • 4. Improvement of Hydrocolloid-Based Matrices Properties
  • 4.1. Plasticizers Addition
  • 4.2. Crosslinking of the Polymeric Chains
  • 4.3. Lipids Addition
  • 4.4. Hydrocolloids Addition
  • 5. Functionalization of Polysaccharide- and Protein-Based Materials
  • 5.1. Antimicrobial Matrices
  • 5.2. Antioxidant Matrices
  • 5.3. Nanomaterials Containing Matrices
  • 6. Application of Edible Films and Coatings Based on Hydrocolloids
  • 6.1. Fruit and Vegetables
  • 6.2. Meat and Poultry
  • 6.3. Fish and Seafood
  • 6.4. Bakery and Dairy Products
  • 7. Conclusions
  • References
  • ch.
  • 9 Probiotic and Synbiotic Yogurt Production Using Free or Alginate/Resistant Starch Microencapsulated Lactobacillus plantarum / Yahya Shafiei
  • 1. Introduction
  • 1.1. Probiotics
  • 1.2. Prebiotics
  • 1.3. Synbiotics
  • 1.4. Microencapsulation
  • 1.5. Yogurt
  • 2. Experimental Practice
  • 2.1. Culture and Enumeration of Bacteria
  • 2.2. Encapsulation Procedure
  • 2.3. Manufacture of Yogurt Samples
  • 2.4. Survival of L. plantarum in Yogurt
  • 2.5. Physicochemical Analyses
  • 2.6. Sensory Evaluation
  • 2.7. Statistical Analysis
  • 3. Results and Discussion
  • 3.1. Physical Characteristics of Microcapsules and Entrapment Efficiency
  • 3.2. Viability and Metabolic Activity of Encapsulated Bacteria
  • 3.3. Survival of Free and Encapsulated Probiotic Bacteria in Yogurt
  • 3.4. Microbial Properties of Yogurt Samples
  • 3.5. Physico-chemical Characteristics of Yogurts
  • 3.6. Sensory Properties of Yogurt Samples
  • 4. Conclusions
  • References
  • ch. 10 Nutraceutical Formulation Strategies to Enhance the Bioavailability and Efficiency: An Overview / Muhammad A. Irshad
  • 1. Introduction
  • 2. Strategies to Increase Bioavailability in Nutraceutical Delivery Systems
  • 3. Nutraceutical Delivery Systems
  • 3.1. Phospholipid-Based Delivery Systems
  • 3.2. Emulsion-Based Delivery Approach
  • 3.3. Self-Emulsifying Drug Delivery System Approach
  • 3.4. Chitosan-Based Delivery Systems
  • 3.5. Nanodispersions
  • 3.6. Suspension-Based Delivery Systems
  • 3.7. Nanostructured Lipid Carriers
  • 3.8. Micelle-Based Delivery Systems
  • 3.9. Nanoencapsulation
  • 3.10. Encapsulation of Bioactives in Electrospun Fibers
  • 4. Conclusions
  • References
  • ch. 11 Health Perspectives of an Isoflavonoid Genistein and its Quantification in Economically Important Plants / Sathishkumar Ramalingam
  • 1. Introduction.