|
|
|
|
LEADER |
00000cam a2200000Mi 4500 |
001 |
SCIDIR_on1030592341 |
003 |
OCoLC |
005 |
20231120010251.0 |
006 |
m o d |
007 |
cr |n||||||||| |
008 |
180405s2018 enk o 001 0 eng d |
040 |
|
|
|a YDX
|b eng
|e pn
|c YDX
|d N$T
|d EBLCP
|d N$T
|d OPELS
|d DKU
|d OCLCF
|d STF
|d MERER
|d OCLCQ
|d D6H
|d OCLCQ
|d INT
|d SNK
|d AU@
|d OCLCQ
|d U3W
|d LVT
|d OCLCQ
|d OTZ
|d ESU
|d UKMGB
|d OCLCQ
|d OCLCO
|d OCLCQ
|d OCLCO
|
066 |
|
|
|c (S
|
015 |
|
|
|a GBB837499
|2 bnb
|
016 |
7 |
|
|a 018757348
|2 Uk
|
019 |
|
|
|a 1030303163
|a 1030760239
|a 1030814581
|a 1030902353
|a 1030921982
|a 1229877776
|a 1264894850
|
020 |
|
|
|a 9780128115008
|q (electronic bk.)
|
020 |
|
|
|a 0128115009
|q (electronic bk.)
|
020 |
|
|
|z 0128114487
|
020 |
|
|
|z 9780128114483
|
035 |
|
|
|a (OCoLC)1030592341
|z (OCoLC)1030303163
|z (OCoLC)1030760239
|z (OCoLC)1030814581
|z (OCoLC)1030902353
|z (OCoLC)1030921982
|z (OCoLC)1229877776
|z (OCoLC)1264894850
|
050 |
|
4 |
|a TA403.2
|
072 |
|
7 |
|a TEC
|x 009000
|2 bisacsh
|
072 |
|
7 |
|a TEC
|x 035000
|2 bisacsh
|
082 |
0 |
4 |
|a 620.11
|2 23
|
245 |
0 |
0 |
|a Role of materials science in food bioengineering /
|c edited by Alexandru Mihai Grumezescu, Alina Maria Holban.
|
260 |
|
|
|a London :
|b Academic Press,
|c �2018.
|
300 |
|
|
|a 1 online resource
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a Handbook of food bioengineering ;
|v v. 19
|
500 |
|
|
|a Includes index.
|
520 |
|
|
|a The Role of Materials Science in Food Bioengineering, Volume 19 in the Handbook of Food Bioengineering, presents an up-to-date review of the most recent advances in materials science, further demonstrating its broad applications in the food industry and bioengineering. Many types of materials are described, with their impact in food design discussed. The book provides insights into a range of new possibilities for the use of materials and new technologies in the field of food bioengineering. This is an essential reference on bioengineering that is not only ideal for researchers, scientists and food manufacturers, but also for students and educators.
|
505 |
0 |
0 |
|6 880-01
|g Machine generated contents note:
|g ch. 1
|t New Trends in Food Technology for Green Recovery of Bioactive Compounds from Plant Materials /
|r Suzana Rimac-Brncic --
|g 1.
|t Introduction --
|g 1.1.
|t Biologically Active Compounds --
|g 2.
|t Review of Extraction Methods of Bioactive Compounds --
|g 2.1.
|t New Extraction Techniques of Bioactive Compounds --
|g 3.
|t Conclusions --
|t References --
|g ch. 2
|t Different Bioengineering Approaches on Production of Bioflavor Compounds /
|r Yonca K. Yuceer --
|g 1.
|t Introduction --
|g 2.
|t Biotechnological Processes for the Production of Bioflavor and Fragrance Compounds --
|g 2.1.
|t Production of Flavors and Fragrances by Plant Cell or Tissue Cultures --
|g 2.2.
|t Microbial Fermentation (De novo Synthesis) --
|g 2.3.
|t Microbial and Enzymatic Bioconversion/Biotransformation --
|g 3.
|t Bioengineering Approaches Used for the Production of Bioflavor Compounds: Current State and Prospects --
|g 3.1.
|t Bioprocess Designs With Different Bioreactor Configurations and Fermentation Strategies for Production of Bioflavor Compounds --
|g 3.2.
|t Bioengineering Approaches Used for Scaling Up and Downstream Processes of Bioflavor Compounds --
|g 3.3.
|t Statistical Optimization and Mathematical Modeling Studies Used in Bioflavor Production Processes --
|g 3.4.
|t Requirements and Perspectives --
|g 4.
|t Conclusions --
|t References --
|g ch. 3
|t Biocompatibility and Toxicity of Allotropic Forms of Carbon in Food Packaging /
|r Pawel K. Zarzycki --
|g 1.
|t Introduction --
|g 2.
|t Structure of Allotropic Forms of Carbon --
|g 2.1.
|t Diamond --
|g 2.2.
|t Graphite --
|g 2.3.
|t Carbine --
|g 3.
|t Others Forms of Graphite --
|g 3.1.
|t Graphene --
|g 3.2.
|t Carbon Nanotubes --
|g 3.3.
|t Fullerenes --
|g 4.
|t Biocompatibility and Toxicity of Nanocrystalline Diamond Coatings --
|g 5.
|t Biocompatibility and Bioactivity of Allotropic Forms of Carbon --
|g 6.
|t Toxicity of Carbon Nanomaterials in Food Nanopackaging --
|g 6.1.
|t Nanomaterials --
|g 6.2.
|t Toxicity Testing Strategy of Engineered Nanomaterials --
|g 6.3.
|t Carbon Nanomaterials --
|g 7.
|t Functionalization of Nanodiamonds by Plasma-Chemical and Chemical Methods for Use on the Food Bioactive Packaging --
|g 8.
|t Nanotechnology in Food Packaging --
|g 9.
|t Conclusions --
|t References --
|g ch. 4
|t Fabrication of Functional Electrospun Nanostructures for Food Applications /
|r Conrad O. Perera --
|g 1.
|t Introduction --
|g 1.1.
|t Electrospinning --
|g 1.2.
|t Electrospraying --
|g 1.3.
|t Strategies for Controlling the Electrospinning Fabrication Process --
|g 1.4.
|t Different Approaches to Electrospinning for a Defined Fiber Structure --
|g 2.
|t Encapsulation and Immobilization of Functional Food Additives --
|g 2.1.
|t Scaffolding Materials --
|g 2.2.
|t Materials Derived From Natural Sources --
|g 2.3.
|t Polysaccharides --
|g 2.4.
|t Protein --
|g 2.5.
|t Materials Derived From Synthetic Sources --
|g 3.
|t Blending of Polymers --
|g 4.
|t Scaffolding Materials --
|g 4.1.
|t Scaffolding Materials as a Carrier for Functional Food Additives --
|g 5.
|t Characterization of Electrospun Nanofibers --
|g 5.1.
|t Determination of Performance of Electrospun Nanostructures --
|g 5.2.
|t Determination of Physicochemical Properties --
|g 6.
|t Functionalization of Polymer Nanofibers --
|g 6.1.
|t Blending and Physical Coating --
|g 6.2.
|t Molecular Immobilization --
|g 6.3.
|t Layer-by-Layer Assembly --
|g 6.4.
|t Plasma Treatment --
|g 6.5.
|t Chemical Treatment --
|g 6.6.
|t Graft Copolymerization --
|g 7.
|t Nanofiber Applications in Food --
|g 7.1.
|t Nanofibers as Packaging Materials --
|g 7.2.
|t Nanofibers as Surface Coatings --
|g 7.3.
|t Novel Coatings Using Nanofibers --
|g 7.4.
|t Nanofibers as Food Sensors --
|g 7.5.
|t Food Safety and Regulatory Considerations --
|g 8.
|t Conclusions --
|t References --
|g ch. 5
|t Bioactive Peptides as Functional Food Ingredients /
|r Grisel Bersi --
|g 1.
|t Introduction --
|g 2.
|t Different Technologies for the Production of Bioactive Peptides --
|g 2.1.
|t Extraction of Peptides From Natural Sources --
|g 2.2.
|t Production by Recombinant DNA Technology --
|g 2.3.
|t Production in Cell-Free Expression Systems --
|g 2.4.
|t Production in Transgenic Animals and Plants --
|g 2.5.
|t Fermentation --
|g 2.6.
|t Chemical and Enzymatic Synthesis --
|g 2.7.
|t Novel Bioprocessing Approaches for Bioactive Peptides, Integrating-Omics Techniques and in Silico Analysis --
|g 3.
|t Bioactive Peptides: Mechanism of Action and Applications --
|g 3.1.
|t Antimicrobial Activity Peptides --
|g 3.2.
|t Antioxidative Activity Peptides --
|g 3.3.
|t Antitumoral Activity Peptides --
|g 3.4.
|t Antihypertensive Activity Peptides --
|g 3.5.
|t Antithrombotic Activity Peptides --
|g 3.6.
|t Antiadipogenic Activity Peptides --
|g 3.7.
|t Antiinflammatory Activity Peptides --
|g 4.
|t Absortion, Bioavailability, and Effectiveness of Bioactive Peptides: Strategies to Enhance Them --
|g 5.
|t Bioactive Peptides in Food Systems --
|g 6.
|t Safety of Bioactive Peptide: Regulatory Standards --
|g 7.
|t Conclusions --
|t References --
|g ch. 6
|t Potential Applications of Cyclodextrin Inclusion Complexes, Liposomes, and Drug-in-Cyclodextrin-in-Liposome in Food Industry and Packaging /
|r Helene Greige-Gerges --
|g 1.
|t Introduction --
|g 2.
|t Applications of Free Natural Molecules in Food --
|g 3.
|t Encapsulation Systems --
|g 3.1.
|t Cyclodextrin/Drug Inclusion Complex --
|g 3.2.
|t Liposomes --
|g 3.3.
|t Drug-in-Cyclodextrin-in-Liposomes --
|g 4.
|t Characterization of Carrier Systems Loading Natural Molecules --
|g 4.1.
|t Phase Solubility --
|g 4.2.
|t Proof of Inclusion Complexes Formation --
|g 4.3.
|t Mean Size, Polydispersity Index, and Zeta Potential of Cyclodextrin-Inclusion Complexes, Liposomes, and DCLs --
|g 4.4.
|t Loading Capacity, Encapsulation, Loading, and Complexation Efficiencies --
|g 4.5.
|t Morphology --
|g 4.6.
|t Release Study --
|g 4.7.
|t Stability --
|g 5.
|t Biological Effects --
|g 5.1.
|t Antioxidant Effect --
|g 5.2.
|t Antibacterial Effect --
|g 5.3.
|t Antifungal Effect --
|g 5.4.
|t Antiviral Effect --
|g 5.5.
|t Larvicidal Effect --
|g 5.6.
|t Anticancer Effect --
|g 6.
|t Food Applications --
|g 6.1.
|t Cyclodextrin/drug-inclusion Complexes --
|g 6.2.
|t Liposomes --
|g 6.3.
|t Drug-in-Cyclodextrin-in-Liposome Systems --
|g 7.
|t Conclusions --
|t References --
|g ch. 7
|t Coacervation Technique as an Encapsulation and Delivery Tool for Hydrophobic Biofunctional Compounds /
|r Colin J. Barrow --
|g 1.
|t Introduction --
|g 2.
|t Selection of Shell and Core Materials --
|g 2.1.
|t Selection of Shell Materials --
|g 2.2.
|t Selection of Core Materials --
|g 3.
|t Microencapsulation Process Using Complex Coacervation Technique --
|g 3.1.
|t Homogenization/Emulsification --
|g 3.2.
|t Coacervation --
|g 3.3.
|t Shell Formation/Hardening --
|g 3.4.
|t Cross-linking --
|g 4.
|t Biotechnological Applications --
|g 4.1.
|t Gelatin-Based Applications --
|g 4.2.
|t Dairy Protein-Based Applications --
|g 4.3.
|t Soy Protein-Based Applications --
|g 4.4.
|t Other Polymer-Based Applications --
|g 5.
|t Characterization of Final Microcapsule Products --
|g 5.1.
|t Morphological Structure --
|g 5.2.
|t Size Distribution --
|g 5.3.
|t Encapsulation Parameters --
|g 5.4.
|t Mechanical Strength and Flow Behavior --
|g 5.5.
|t Physicochemical Stability --
|g 5.6.
|t Bioavailability and Controlled-Release Behavior --
|g 6.
|t Conclusion and Future Trends --
|t References --
|g ch. 8
|t Food Hydrocolloids As Matrices for Edible Packaging Applications /
|r Amparo Chiralt --
|g 1.
|t Introduction --
|g 2.
|t Polysaccharides and Proteins: Matrices for Edible Films and Coatings --
|g 3.
|t Properties of Edible Films and Coatings Based on Hydrocolloids --
|g 4.
|t Improvement of Hydrocolloid-Based Matrices Properties --
|g 4.1.
|t Plasticizers Addition --
|g 4.2.
|t Crosslinking of the Polymeric Chains --
|g 4.3.
|t Lipids Addition --
|g 4.4.
|t Hydrocolloids Addition --
|g 5.
|t Functionalization of Polysaccharide- and Protein-Based Materials --
|g 5.1.
|t Antimicrobial Matrices --
|g 5.2.
|t Antioxidant Matrices --
|g 5.3.
|t Nanomaterials Containing Matrices --
|g 6.
|t Application of Edible Films and Coatings Based on Hydrocolloids --
|g 6.1.
|t Fruit and Vegetables --
|g 6.2.
|t Meat and Poultry --
|g 6.3.
|t Fish and Seafood --
|g 6.4.
|t Bakery and Dairy Products --
|g 7.
|t Conclusions --
|t References --
|g ch.
|
505 |
0 |
0 |
|r 9
|t Probiotic and Synbiotic Yogurt Production Using Free or Alginate/Resistant Starch Microencapsulated Lactobacillus plantarum /
|r Yahya Shafiei --
|g 1.
|t Introduction --
|g 1.1.
|t Probiotics --
|g 1.2.
|t Prebiotics --
|g 1.3.
|t Synbiotics --
|g 1.4.
|t Microencapsulation --
|g 1.5.
|t Yogurt --
|g 2.
|t Experimental Practice --
|g 2.1.
|t Culture and Enumeration of Bacteria --
|g 2.2.
|t Encapsulation Procedure --
|g 2.3.
|t Manufacture of Yogurt Samples --
|g 2.4.
|t Survival of L. plantarum in Yogurt --
|g 2.5.
|t Physicochemical Analyses --
|g 2.6.
|t Sensory Evaluation --
|g 2.7.
|t Statistical Analysis --
|g 3.
|t Results and Discussion --
|g 3.1.
|t Physical Characteristics of Microcapsules and Entrapment Efficiency --
|g 3.2.
|t Viability and Metabolic Activity of Encapsulated Bacteria --
|g 3.3.
|t Survival of Free and Encapsulated Probiotic Bacteria in Yogurt --
|g 3.4.
|t Microbial Properties of Yogurt Samples --
|g 3.5.
|t Physico-chemical Characteristics of Yogurts --
|g 3.6.
|t Sensory Properties of Yogurt Samples --
|g 4.
|t Conclusions --
|t References --
|g ch. 10
|t Nutraceutical Formulation Strategies to Enhance the Bioavailability and Efficiency: An Overview /
|r Muhammad A. Irshad --
|g 1.
|t Introduction --
|g 2.
|t Strategies to Increase Bioavailability in Nutraceutical Delivery Systems --
|g 3.
|t Nutraceutical Delivery Systems --
|g 3.1.
|t Phospholipid-Based Delivery Systems --
|g 3.2.
|t Emulsion-Based Delivery Approach --
|g 3.3.
|t Self-Emulsifying Drug Delivery System Approach --
|g 3.4.
|t Chitosan-Based Delivery Systems --
|g 3.5.
|t Nanodispersions --
|g 3.6.
|t Suspension-Based Delivery Systems --
|g 3.7.
|t Nanostructured Lipid Carriers --
|g 3.8.
|t Micelle-Based Delivery Systems --
|g 3.9.
|t Nanoencapsulation --
|g 3.10.
|t Encapsulation of Bioactives in Electrospun Fibers --
|g 4.
|t Conclusions --
|t References --
|g ch. 11
|t Health Perspectives of an Isoflavonoid Genistein and its Quantification in Economically Important Plants /
|r Sathishkumar Ramalingam --
|g 1.
|t Introduction.
|
650 |
|
0 |
|a Materials science.
|
650 |
|
0 |
|a Materials
|x Biotechnology.
|
650 |
|
0 |
|a Food
|x Biotechnology.
|
650 |
|
6 |
|a Science des mat�eriaux.
|0 (CaQQLa)201-0141984
|
650 |
|
6 |
|a Mat�eriaux
|x Biotechnologie.
|0 (CaQQLa)201-0226992
|
650 |
|
6 |
|a Aliments
|x Biotechnologie.
|0 (CaQQLa)201-0186661
|
650 |
|
7 |
|a TECHNOLOGY & ENGINEERING
|x Engineering (General)
|2 bisacsh
|
650 |
|
7 |
|a TECHNOLOGY & ENGINEERING
|x Reference.
|2 bisacsh
|
650 |
|
7 |
|a Food
|x Biotechnology
|2 fast
|0 (OCoLC)fst00930473
|
650 |
|
7 |
|a Materials
|x Biotechnology
|2 fast
|0 (OCoLC)fst01011782
|
650 |
|
7 |
|a Materials science
|2 fast
|0 (OCoLC)fst01011957
|
776 |
0 |
8 |
|i Print version:
|z 0128114487
|z 9780128114483
|w (OCoLC)993637328
|
830 |
|
0 |
|a Handbook of food bioengineering ;
|v v. 19.
|
856 |
4 |
0 |
|u https://sciencedirect.uam.elogim.com/science/book/9780128114483
|z Texto completo
|
880 |
0 |
0 |
|6 505-01/(S
|g Contents note continued:
|g 2.
|t Source and Distribution --
|g 3.
|t Biosynthesis of Genistein --
|g 4.
|t Bioavailability and Metabolism of Genistein --
|g 5.
|t Biological Properties and Mechanisms of Genistein --
|g 5.1.
|t Inhibitor of Protein Tyrosine Kinases --
|g 5.2.
|t Topoisomerase Inhibitor --
|g 5.3.
|t Inhibitor of Phosphatidyl Inositol Yurnover --
|g 5.4.
|t Estrogen Receptor --
|g 5.5.
|t Multidrug Resistance Proteins Inhibitor --
|g 6.
|t Actions of Genistein at the Cellular Level --
|g 6.1.
|t Induction of Apoptosis --
|g 6.2.
|t Antioxidant --
|g 6.3.
|t Antiangiogenic Effects --
|g 6.4.
|t Antiinflammatory --
|g 6.5.
|t Immunity Function --
|g 6.6.
|t Activation of PPARs --
|g 6.7.
|t Antihelminthic and Atherosclerotic Agent --
|g 6.8.
|t Antidiabetes Effect --
|g 6.9.
|t Mast Cell Stabilization --
|g 6.10.
|t Induction of Cellular Differentiation --
|g 6.11.
|t Inhibition of Cell Proliferation --
|g 6.12.
|t Alterations in the Cell Cycle Progression --
|g 6.13.
|t Inhibition of Osteoclastic Function --
|g 6.14.
|t Antidepressant --
|g 7.
|t Prophylaxis and Therapy --
|g 7.1.
|t Cancer --
|g 7.2.
|t Cardiovascular Disease --
|g 7.3.
|t Postmenopausal Problems --
|g 7.4.
|t Bone Loss and Osteoporosis --
|g 7.5.
|t Central Nervous System --
|g 8.
|t Genistein Engineering and Quantification in Transgenic Plants --
|g 9.
|t Conclusions --
|t References --
|g ch. 12
|t Microbial Polyamino Acids: An Overview for Commercial Attention /
|r Rekha S. Singhal --
|g 1.
|t Introduction --
|g 1.1.
|t Proteins Versus Polyamino Acids --
|g 1.2.
|t Polyamino Acids --
|g 2.
|t Types of Polyamino Acids --
|g 2.1.
|t ε-PL --
|g 2.2.
|t Poly-γ-PGA --
|g 2.3.
|t CGP --
|g 3.
|t Biosynthesis of Polyamino Acids --
|g 3.1.
|t Biosynthetic Pathway of ε-PL --
|g 3.2.
|t Biosynthesis of γ-PGA --
|g 3.3.
|t Biosynthesis of Cyanophycin --
|g 4.
|t Production of Polyamino Acids --
|g 4.1.
|t Production of ε-PL --
|g 4.2.
|t Production of γ-PGA --
|g 4.3.
|t Production of Cyanophycin --
|g 5.
|t Biodegradation of Polyamino Acids --
|g 6.
|t Purification and Characterization --
|g 6.1.
|t Purification and Characterization of ε-PL --
|g 6.2.
|t Purification and Characterization of γ-PGA --
|g 6.3.
|t Purification and Characterization of Cyanophycin --
|g 7.
|t Applications of Polyamides --
|g 7.1.
|t Applications of ε-PL --
|g 7.2.
|t Applications of γ-PGA --
|g 7.3.
|t Applications of Cyanophycin --
|g 8.
|t Outlook and Perspectives --
|t References --
|g ch. 13
|t Promising Functional Lipids for Therapeutic Applications /
|r Pubali Dhar --
|g 1.
|t Introduction --
|g 2.
|t Therapeutic Roles of Natural Functional Lipids --
|g 2.1.
|t Cis-9, trans-11 Conjugated Linoleic Acid --
|g 2.2.
|t Conjugated Linolenic Acid --
|g 2.3.
|t γ-Linolenic Acid (GLA) --
|g 2.4.
|t ω-3PUFAs --
|g 2.5.
|t Lipoic Acid --
|g 2.6.
|t Marine Phospholipids --
|g 2.7.
|t Phytosterols --
|g 2.8.
|t Short-Chain Fatty Acids (SCF) --
|g 3.
|t Molecular Considerations of Functional Lipids --
|g 4.
|t Conclusions --
|t References --
|g ch. 14
|t Status and Future Prospects of Fructooligosaccharides as Nutraceuticals /
|r Yedla Poornachandra --
|g 1.
|t Introduction --
|g 2.
|t Genesis of Nutraceuticals --
|g 3.
|t History and Importance of Nutraceuticals --
|g 4.
|t Nutraceutical Regulations --
|g 5.
|t Nutraceutical Market at a Glance --
|g 6.
|t Functional Foods --
|g 7.
|t Prebiotics and Their Role in Nutrition --
|g 8.
|t Fructans and Their Classification --
|g 9.
|t Sources of Fructans --
|g 10.
|t Inulin --
|g 11.
|t Overview of Fructooligosaccharides --
|g 11.1.
|t Manufacture of FOS --
|g 11.2.
|t Physiology of FOS --
|g 11.3.
|t Properties of FOS --
|g 12.
|t Methods of FOS Production --
|g 13.
|t β-Fructofuranosidases --
|g 13.1.
|t Inulinases --
|g 13.2.
|t Levanases --
|g 13.3.
|t Sucrases or Invertases --
|g 14.
|t Fructosyltransferases --
|g 14.1.
|t Inulosucrases --
|g 14.2.
|t Levansucrases --
|g 15.
|t Mechanism of Action --
|g 16.
|t Microbial Production of FOS --
|g 17.
|t Improvement in FOS Yields --
|g 17.1.
|t Genetic Engineering Approaches --
|g 17.2.
|t Medium Optimization for FOS Production --
|g 17.3.
|t Carbon Substrates --
|g 17.4.
|t Nitrogen Sources --
|g 17.5.
|t Effect of Metal Ions --
|g 17.6.
|t Physical Parameters --
|g 17.7.
|t Statistical Designs --
|g 18.
|t Fermentation Strategies --
|g 19.
|t Immobilization Strategies --
|g 20.
|t Purification --
|g 21.
|t Downstream Processing --
|g 21.1.
|t Separation and Analysis --
|g 21.2.
|t Spray Drying --
|g 22.
|t Applications of Fructooligosaccharides --
|g 22.1.
|t Food Industry --
|g 22.2.
|t Synbiotics --
|g 22.3.
|t Healthcare --
|g 22.4.
|t Bioethanol Production --
|g 22.5.
|t Chemical Industry --
|g 23.
|t Concluding Remarks --
|t References --
|g ch. 15
|t Food Materials Science in Egg Powder Industry /
|r Komal Javed --
|g 1.
|t Eggs --
|g 1.1.
|t Types of Edible Eggs --
|g 1.2.
|t Composition of Eggs --
|g 1.3.
|t Bioactive Compounds in Egg --
|g 1.4.
|t Egg Uses and Products --
|g 1.5.
|t Safe Egg Products Production --
|g 2.
|t Egg Powder --
|g 2.1.
|t History --
|g 2.2.
|t Advantages of Using Powdered Eggs --
|g 2.3.
|t Manufacturing of Eggshell Powder --
|g 2.4.
|t Manufacturing Methods for Whole Egg, Albumin, and Yolk Powder --
|g 2.5.
|t Impact of Food Processing on Egg Components --
|g 3.
|t Conclusion --
|t References.
|