Doherty power amplifiers : from fundamentals to advanced design methods /
Annotation
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
London :
Academic Press,
[2018]
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Front Cover; Doherty Power Amplifiers: From Fundamentals to Advanced Design Methods; Copyright; Contents; Acknowledgments; Chapter One: Introduction to Doherty Power Amplifier; 1.1. Historical Survey; 1.2. Basic Operation Principle; 1.2.1. Load Modulation Behavior; 1.2.1.1. Load Impedance Modulation; 1.2.1.2. Voltage, Current, and Load Impedance Profiles; 1.2.1.3. Load Lines for the Modulated Loads; 1.2.2. Efficiency and Gain Characteristics; 1.2.2.1. Efficiency; 1.2.2.2. Gain; 1.3. Offset Line Technique; 1.3.1. Realization of Doherty Amplifier; 1.3.2. Operation of the Offset Line.
- 1.3.2.1. Offset Line at Carrier Amplifier1.3.2.2. Offset Line at Peaking Amplifier; 1.4. Other Load Modulation Methods; 1.4.1. Voltage Combined Doherty Amplifier; 1.4.1.1. Series Configured Doherty Amplifier in Voltage Combining Mode; 1.4.1.2. Transformer Based Power Amplifier; 1.4.1.3. Transformer Based Voltage Combined Doherty Amplifier; 1.4.2. Inverted Load Modulation; 1.4.3. Direct Matching at the First Peak Efficiency Point; 1.4.3.1. Using ROPT/2 Inverter; 1.4.3.2. Using 2ROPT Inverter; Further Reading; Chapter Two: Realization of Proper Load Modulation Using a Real Transistor.
- 2.1. Correction for Lower Current of Peaking Amplifier2.1.1. Uneven Drive Through Coupler; 2.1.1.1. Current Ratio of Peaking Amplifier Versus Carrier Amplifier; 2.1.1.2. Efficiency of the Asymmetric Amplifier With Uneven Power Drive; 2.1.2. Gate Bias Adaptation to Compensate the Low Current of Peaking Amplifier; 2.1.2.1. Peaking Amplifier Adaptation; 2.1.2.2. Adaptation of the Both Amplifiers; 2.2. Knee Voltage Effect on Doherty Amplifier Operation; 2.2.1. Doherty Amplifier Operation With Knee Voltage; 2.2.2. Load Modulation Behavior of Doherty Amplifier With Optimized Carrier Amplifier.
- 2.3. Offset Line Design for Compensation of Peaking Amplifier Phase Variation2.3.1. Phase Variation of the Peaking Amplifier; 2.3.2. Load Modulation of Peaking Amplifier With the Additional Offset Lines; 2.3.3. The Load Modulation of the Carrier Amplifier With the Additional Offset Lines; 2.3.4. Simulation Results With Real Device; Further Reading; Chapter Three: Enhancement of Doherty Amplifier; 3.1. Doherty Amplifier With Asymmetric Vds; 3.2. Optimized Design of GaN HEMT Doherty Power Amplifier With High Gain and High Efficiency; 3.2.1. Optimized Design of Carrier and Peaking Amplifiers.
- 3.2.2. Operation of the Optimally Matched Doherty Amplifier3.3. Optimized Peaking Amplifier Design for Doherty Amplifier; 3.3.1. Optimized Design of Peaking Amplifier for Proper Doherty Operation; 3.3.2. Simulation and Experimental Results; 3.4. Saturated Doherty Amplifier; 3.4.1. Operational Principle of the Saturated Doherty Amplifier; 3.4.2. Efficiency and Linearity of the Saturated Doherty Amplifier; 3.4.2.1. Efficiency of the Saturated Doherty Amplifier; 3.4.2.2. Linearity of the Saturated Doherty Amplifier; 3.4.3. Improved Harmonic Control Circuit for Saturated Amplifier.