Cargando…

Carbon-based polymer nanocomposites for environmental and energy applications /

Carbon-Based Polymer Nanocomposites for Environmental and Energy Applications provides the fundamental physico-chemical characterizations of recently explored carbon-based polymer nanocomposites, such as carbon nanotubes, graphene and its derivatives, nanodiamond, fullerenes and other nano-sized car...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Ismail, Ahmad Fauzi (Editor ), Goh, Pei Sean (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Amsterdam, Netherlands : Elsevier, 2018.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Front Cover; Carbon-Based Polymer Nanocomposites for Environmental and Energy Applications; Copyright Page; Contents; List of Contributors; I. Fabrication and Characterizations of Carbon-Based Polymer Nanocomposite; 1 The Fabrication of Carbon-Based Polymer Nanocomposite; 1.1 Introduction; 1.2 Particle Processing; 1.2.1 Covalent Functionalization; 1.2.1.1 Functionalization by Oxidation; 1.2.1.1.1 Wet Oxidation; 1.2.1.1.2 Dry Oxidation; 1.2.1.2 Functionalization With Reactive Organic Compounds; 1.2.1.3 In situ Polymerization; 1.2.2 Noncovalent Functionalization; 1.3 Polymer Processing.
  • 1.3.1 Solvent Processing1.3.1.1 Flat Sheet Casting and Molding; 1.3.1.2 Hollow Fiber Spinning; 1.3.1.3 Nanofiber Electrospinning; 1.3.2 Melt Processing; 1.3.2.1 Hollow-Fiber Melt Spinning; 1.3.2.2 Fiber Melt Spinning; 1.3.3 Layer-by-Layer Assembly; 1.4 Conclusion and Future Trends; Acknowledgment; References; 2 Surface Modification of Carbon-Based Nanomaterials for Polymer Nanocomposites; 2.1 Introduction; 2.2 Surface Modification of Carbon Nanomaterials for Polymer Nanocomposites; 2.2.1 Surface Modification Via Noncovalent Functionalization.
  • 2.2.1.1 Surface Modification of Graphene Via Noncovalent Functionalization2.2.1.2 Surface Modification of Carbon Nanotubes via Noncovalent Functionalization; 2.2.2 Surface Modification Via Covalent Functionalization; 2.2.2.1 Functionalization of CNTs and Graphene Using Click Chemistry; 2.2.2.1.1 Functionalization of CNTs Using Click Chemistry; 2.2.2.1.2 Functionalization of Graphene Using Click Chemistry; 2.2.2.2 Functionalization of CNT and Graphene Using Block Copolymers; 2.2.2.2.1 Functionalization of CNTs Using Block Copolymers.
  • 2.2.2.2.2 Functionalization of Graphene Using Block Copolymers2.2.2.3 Functionalization of CNTs and Graphene Using Dendritic Polymers; 2.2.2.3.1 Functionalization of CNTs Using Dendritic Polymers; 2.2.2.3.2 Functionalization of Graphene Using Dendritic Polymers; 2.3 Conclusion; References; 3 Characterizations of Carbon-Based Polypropylene Nanocomposites; 3.1 Introduction; 3.2 Polypropylene/Graphene Nanoplatelet Nanocomposites; 3.3 Polypropylene/Carbon Nanotube Nanocomposites; 3.4 Conclusion and Future Prospects; Acknowledgments; References.
  • 4 Indentation Methods for the Characterization of Carbon-Based Polymer Nanocomposites4.1 Introduction: Basic Concepts and Approaches in Indentation Research; 4.2 Basic Approaches, Dependencies, and Characteristics in Classical, Conventional Indentation Measurements; 4.3 Microindentation Methods Developed by Our Working Group as an Interlink Between Conventional Indentation Tests and DSI ... ; 4.3.1 Determination of the Indentation Depth (h) in Loaded State of the Indenter Using a Standard Vickers Microhardness Device; 4.3.2 Penetration Curves; 4.3.3 Imprint Relaxation.