Cargando…

Emerging applications of nanoparticles and architectural nanostructures : current prospects and future trends /

Emerging Applications of Nanoparticles and Architecture Nanostructures: Current Prospects and Future Trends discusses the most important current applications of nanoparticles and architecture nanostructures in a comprehensive, detailed manner. The book covers major applications of nanoparticles and...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Barhoum, Ahmed (Editor ), Makhlouf, Abdel Salam Hamdy (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Amsterdam : Academic Press, an imprint of Elsevier, [2018]
Colección:Micro & nano technologies.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Machine generated contents note: ch. 1 Liquid-Phase Synthesis of Nanoparticles and Nanostructured Materials / Andrei Sapelkin
  • 1. Introduction
  • 2. Chemical Stain Etching
  • 3. Electrodeposition Methods
  • 4. Direct-Precipitation Methods
  • 5. Sol-Gel Methods
  • 6. Colloidal Synthesis Methods
  • 7. Hot-Injection Synthesis Methods
  • 8. Hydrothermal and Solvothermal Methods
  • 9. Microwave-Assisted Synthesis Methods
  • 10. Ultrasonic Synthesis Methods
  • 11. Laser Ablation in Liquid-Phase
  • 12. Conclusions
  • References
  • ch. 2 Functional Nanostructured Oxides: Synthesis, Properties, and Applications / Mario Miki-Yoshida
  • 1. Introduction
  • 2. Basic Concepts of Nanostructured Materials
  • 2.1. Nanostructured Materials
  • 2.2. Functional Nanostructured Metal Oxides
  • 3. Case Studies of Functional Nanostructured Oxides via AACVD
  • 3.1. Basic Concepts of the AACVD Method
  • 3.2. Hollow Spherical Magnetite (Fe3 O4)
  • 3.3. ZnO and CuO Nanostructures
  • 3.4. Thin Films of CuFeO2
  • 4. Conclusion
  • References
  • ch. 3 DNA Nanostructures: Chemistry, Self-Assembly, and Applications / Awadh B. Yadav
  • 1. DNA as Nanostructure Material
  • 1.1. Nanotechnology
  • 1.2. DNA Self-Assembly
  • 1.3. Strand Displacement Reaction
  • 1.4. Supramolecular DNA Nanotechnology
  • 2. Structural DNA Nanotechnology (SDN)
  • 2.1. DNA Tiles and Lattices: 2D
  • 2.2. 3D DNA Discrete Nanostructures
  • 3. Dynamic DNA Nanostructures
  • 3.1. Dynamic DNA Nanomachines
  • 4. DNA-Guided Assembly of Nanomaterials
  • 4.1. DNA-Based Self-Assembly of Metallic Nanoparticles
  • 4.2. Gold Nanoparticles Arrangement
  • 4.3. Carbon Nanotubes on DNA Assembly
  • 4.4. DNA-Directed Nanowires
  • 4.5. Liposomes for DNA Nanotechnology
  • 5. Applications
  • 5.1. DNA-Based Nanomaterials as Biosensors
  • 5.2. Therapeutic DNA Nanostructures
  • 5.3. DNA-Based Enzyme Reactors
  • 5.4. DNA Scaffolds for Nanophotonics
  • 6. Conclusion and Future Perspective
  • References
  • ch. 4 Lon-Beam-Assisted Deposition of Thin Films / Elena Lyubchenko
  • 1. Introduction
  • 2. Peculiarities of Formation of the Film Structure at IBAD Method
  • 3. Structure of the "Coating-Substrate" Mixing Zone
  • 4. Tribological Properties of Coatings Obtained by IBAD Method
  • 4.1. Microhardness
  • 4.2. Coefficient of Friction and Wear Resistance
  • 4.3. Comparison of Hardness and Wear Resistance of Coatings Obtained by IBAD and Other Physical Vapor Deposition Techniques
  • 5. V-N Thin-Film Hydrogen absorbents
  • 6. Conclusions
  • References
  • ch. 5 Risks and Toxicity of Nanoparticles and Nanostructured Materials / Michael K. Danquah
  • 1. Introduction
  • 2. Toxicity of Inorganic-Based Nanomaterials
  • 3. Toxicity of Carbon-Based Nanomaterials
  • 4. Toxicity of Composite-Based Nanomaterials
  • 5. Environmental, Health, and Safety Issues
  • 6. Conclusion
  • References
  • ch. 6 Nanoimprint Lithography and Transdermal Drug-Delivery Devices / Babak Heidari
  • 1. Introduction
  • 2. Nanoimprint Lithography Types
  • 3. Nanoimprint Lithography Methods
  • 3.1. Full Area Imprinting
  • 3.2. Step and Repeat Imprinting
  • 3.3. Roll-to-roll Imprinting
  • 3.4. Roll and Imprinting
  • 4. Nanoimprint Stamp Consideration
  • 4.1. Materials Compatibility
  • 4.2. Hard/Hard Imprinting
  • 4.3. Hard/Soft and Soft/Soft
  • 5. Types of Imprint Stamps
  • 5.1. Silicon Stamp
  • 5.2. Quartz Stamp
  • 5.3. Nickel Stamp
  • 5.4. Polymer Stamps
  • 5.5. Imprint Processes
  • 5.6. Thermal NIL/hot Embossing
  • 5.7. Ultraviolet NIL
  • 5.8. Simultaneous Thermal and UV NIL
  • 5.9. Nanoimprint Lithography Application Areas
  • 6. Transdermal Drug Delivery Systems
  • 6.1. Types of the Transdermal Drug Delivery Patches
  • 6.2. Microneedles Types
  • 6.3. Imprinting Nanostructured Foil
  • 7. Biosensors
  • 7.1. Interdigitized Nanoelectrode Sensors
  • 7.2. Surface Plasmon Resonance Sensors
  • References
  • ch. 7 Noble Metal Nanoparticles: Synthesis and Biomedical Implementations / Ping-Chang Lin
  • 1. Introduction
  • 2. Gold Nanoparticles
  • 2.1. Synthesis and Properties
  • 2.2. Surface Modification and Functionalization
  • 2.3. Biomedical Applications
  • 3. Silver Nanoparticles
  • 3.1. Properties of Silver Nanoparticles
  • 3.2. Synthetic Methods of Silver Nanoparticles
  • 3.3. Functionalization
  • 3.4. Biomedical Applications
  • 4. Conclusion
  • References
  • ch. 8 Laser Deposition of Nano Coatings on Biomedical Implants / Masoud Mozafari
  • 1. Introduction
  • 2. Technology of Laser Coating Deposition
  • 2.1. Pulsed Laser Deposition
  • 2.2. Laser Cladding
  • 2.3. Matrix-Assisted Pulsed Laser Evaporation
  • 3. Conclusion
  • References
  • ch. 9 Physicochemical Characterization of Nanomaterials: Polymorph, Composition, Wettability, and Thermal Stability / Guy Van Assche
  • 1. Introduction
  • 2. Polymorph, Crystal Structure, and Crystallite Size
  • 3. Elemental Composition
  • 4. Bonding Structure and Oxidation State
  • 4.1. Fourier-Transform Infrared Spectroscopy
  • 4.2. Raman Scattering Spectroscopy
  • 4.3. X-ray Photoelectron Spectroscopy
  • 4.4. Auger Electron Spectroscopy
  • 4.5. Solid State Nuclear Magnetic Resonance
  • 5. Surface Charge and Dispersion Stability
  • 6. Surface Energy, Surface Adhesion, and Wettability
  • 7. Thermal Stability and Thermal Transitions
  • 8. Conclusion and Outlook
  • References
  • ch. 10 Physicochemical Characterization of Nanomaterials: Size, Morphology, Optical, Magnetic, and Electrical Properties / M. Luisa Garcia-Betancourt
  • 1. Introduction
  • 2. Particle Size Distribution, Dispersion, and DLS
  • 3. Specific Surface Area, Porosity, and BET Analysis
  • 4. Optoelectronic Properties
  • 5. UV-VIS Spectroscopy
  • 5.1. Photoluminescence Spectroscopy
  • 5.2. Fluorescence Spectroscopy
  • 6. Magnetic Properties
  • 7. Broadband Dielectric Spectroscopy
  • 8. Imaging Techniques
  • 8.1. Scanning Electron Microscopy
  • 8.2. Transmission Electron Microscopy
  • 9. Conclusion and Outlook
  • References
  • ch. 11 Engineered Nanomaterials: Nanofabrication and Surface Functionalization / Ahmed Barhoum
  • 1. Introduction
  • 2. Nanofabrication Techniques
  • 3. Gas-Phase Production
  • 3.1. Chemical Vapor Condensation
  • 3.2. Plasma Synthesis
  • 3.3. Atomic Layer Deposition
  • 3.4. Arc Discharge Synthesis
  • 5.5. Laser Pyrolysis Synthesis
  • 4. Liquid-Phase Production
  • 4.1. Sol-gel Synthesis
  • 4.2. Microemulsion Synthesis
  • 4.3. Hydrothermal Synthesis
  • 4.4. Sonochemical Synthesis
  • 4.5. Coprecipitation Synthesis
  • 4.6. Laser Ablation Synthesis
  • 4.7. Electrospinning
  • 5. Solid-Phase Production
  • 5.1. Mechanical Attrition
  • 5.2. Ball Milling
  • 5.3. Mechanochemical Synthesis
  • 6. Surface Modification and Functionalization
  • 7. Mechanism of Nanoparticle Formation
  • 7.1. Nucleation
  • 7.2. Growth and Crystallization
  • 8. Conclusion
  • References
  • ch. 12 Nanomaterials History, Classification, Unique Properties, Production and Market / Ahmed Barhoum
  • 1. Introduction
  • 2. Standards and Terminology "Nano"
  • 3. Nanoscience and Nanotechnology
  • 4. History of Nanotechnology
  • 5. Scientific Story of Nanotechnology
  • 6. Types of Nanomaterials
  • 6.1. Carbon-Based Nanomaterials
  • 6.2. Organic-Based Nanomaterials
  • 6.3. Inorganic-Based Nanomaterials
  • 6.4. Composite-Based Nanomaterials
  • 7. Classification of Nanomaterials
  • 8. Size-Dependent Properties
  • 9. Optoelectronic Properties
  • 10. Colloidal Stabilization
  • 11. Self-Assembling Properties
  • 12. Toxicity and Antibacterial Activity
  • 13. State of Nanomaterial Production
  • 14. Future Prospects of Nanotechnology
  • 15. Conclusion
  • References
  • ch.
  • 13 Recent Progress on Nanofabrication of Molecularly Imprinted Polymers / Divya Suares
  • 1. Introduction
  • 2. Advantages of MIPs
  • 3. Applications of MIPs
  • 4. Fabrication of MIPs
  • 4.1. Factors Impacting Fabrication of MIPs
  • 4.2. Challenges/Difficulties in MIP Fabrication
  • 4.3. Nanofabrication of MIPs
  • 5. Novel Methods for Molecular Imprinting
  • 5.1. Combinatorial Molecular Imprinting
  • 5.2. Surface Imprinting
  • 5.3. Antiidiotypic Imprinting
  • 5.4. Epitope Imprinting
  • 5.5. Scaffold Imprinting
  • 5.6. Supercritical Fluid Technique
  • 6. Conclusion
  • References
  • ch. 14 Plant Extract Mediated Synthesis of Nanoparticles / Erwan Rauwel
  • 1. Introduction
  • 2. Plant Extract Mediated Synthesis of Nanoparticles
  • 2.1. Plant Extract Reduction Mechanism
  • 2.2. Mass Production
  • 3. Metal Oxide Nanoparticles
  • 3.1. Zinc Oxide Nanoparticles
  • 3.2. Magnesium Oxide Nanoparticles
  • 3.3. Titanium Dioxide Nanoparticles
  • 3.4. Copper (II/IV) Oxide Nanoparticles
  • 3.5. Iron Oxide Nanoparticles
  • 3.6. Calcium Oxide Nanoparticles
  • 3.7. Cerium Oxide Nanoparticles
  • 4. Antimicrobial Metal Nanoparticles
  • 4.1. Noble Metal Nanoparticles
  • 4.2. Antimicrobial Mechanism of Metallic Nanoparticle Coating
  • 5. Examples of Applications Using Plant Extract Mediated Synthesis
  • 6. Advantages and Drawbacks of Plant Extract Mediated Synthesis
  • 7. Summary
  • References
  • ch. 15 Contemporary Industrial Practice for Manufacturing of Nanomedicines / Steliyan Tinkov
  • 1. Introduction
  • 2. Nanodrug Architecture Platforms
  • 3. Birth of a Particle: Core Manufacturing Technologies
  • 3.1. Overview
  • 3.2. Particle Formation
  • 3.3. Particle Size Reduction.
  • Note continued: 3.4. Drug Loading
  • 3.5. Drug Product Purification
  • 3.6. Drug Product Sterilization
  • 3.7. Discussion
  • Author's Biography
  • References
  • ch. 16 Fabrication, Functionalization, and Dispersion of Carbon Nanotubes / Saman Azhari
  • 1. Introduction
  • 2. History of CNT
  • 3. Background of CNTs
  • 4. Fabrication of CNTs
  • 4.1. Arc-Discharge
  • 4.2. Laser Ablation
  • 4.3. Chemical Vapor Deposition
  • 5. Purification of CNTs
  • 5.1. Dry Methods
  • 5.2. Wet Methods
  • 6. Dispersion of CNTs
  • 6.1. Covalent Functionalization
  • 6.2. Noncovalent Modifications
  • 7. Applications of CNTs
  • 7.1. Energy Storage
  • 7.2. Environmental Applications
  • 7.3. Composites
  • 7.4. Biomedical Applications
  • 8. Characterization of CNT
  • 8.1. Raman
  • 8.2. Ultraviolet Visible (UV/Vis) Spectroscopy
  • 8.3. Fourier Transform Infrared Spectroscopy (FTIR)
  • 8.4. Thermogravimetric Analysis
  • 8.5. Energy Dispersive X-ray Spectroscopy
  • 8.6. Field Emission Scanning Electron Microscopy (FESEM)
  • 8.7. High-Resolution Transmission Electron Microscopy
  • 9. Conclusion and Future Directions
  • References
  • ch. 17 Nanostructured Thin Films and Nanocoatings / Ramalingam Chidambaram
  • 1. Introduction
  • 2. Substrate for Nanocoating and Thin Films
  • 3. Nanocoating Fabrication Methods
  • 3.1. Physical Vapor Deposition
  • 3.2. Chemical Vapor Deposition
  • 4. Polymer Physisorption
  • 5. Polymer Chemisorption
  • 5.1. "Grafting to" Approach
  • 5.2. "Grafting from" Method
  • 5.3. "Grafting Through" Method
  • 6. Physicochemical Characterization Techniques
  • 6.1. Atomic Force Microscopy
  • 6.2. X-ray Diffraction
  • 6.3. Scanning Electron Microscopy
  • 7. Nanocoating Applications
  • 7.1. Aerospace Applications
  • 7.2. Packaging Applications
  • 7.3. Industrial Applications
  • References
  • ch. 18 Bottom-up Synthesis of Hybrid Carbon Nanoscrolls / Maria Benelmekki
  • 1. Overview on Carbon-Based Nanostructures
  • 2. Preparation of Magneto-Plasmonic Carbon Nanoscrolls
  • 2.1. Step 1: Preparation of the Substrate
  • 2.2. Step 2: Deposition of Carbon Nanofilms
  • 2.3. Step 3: Deposition of the Nanoparticles
  • 2.4. Step 4: Liquid Exfoliation of Magneto Plasmonic Carbon Nanoscrolls and Nanosheets
  • 3. Characterization of Carbon Nanoscrolls and Nanocomposites
  • 3.1. Methods of Characterization
  • 3.2. Structural and Compositional Characterization
  • 4. Functional Properties
  • 4.1. Surface Enhanced Raman Scattering
  • 4.2. Photothermal Behavior
  • 5. Discussions and Conclusions
  • 6. Perspectives
  • References
  • ch. 19 Synthesis of Metal Nanoparticles Using Laser Ablation Technique / Vahdatkhah Parisa
  • 1. Introduction
  • 2. Advantages and Disadvantages of PLA
  • 3. Crystallization and Growth Mechanisms
  • 4. PLA Process and Setup
  • 5. General Considerations of PLA
  • 6. Physicochemical Characterization of Metal Nanoparticles
  • 6.1. UV Visible Spectroscopy
  • 6.2. X-ray Diffraction
  • 6.3. X-ray Photoelectron Spectroscopy
  • 6.4. Scanning Electron Microscopy
  • 6.5. Transmission Electron Microscopy
  • References
  • ch. 20 Theories of Nanoparticle and Nanostructure Formation in Liquid Phase / Andrei Sapelkin
  • 1. Introduction
  • 2. Classical Nucleation Theory
  • 3. La Mer's Nucleation and Growth Mechanisms
  • 4. Two-Step Nucleation and Growth Mechanism
  • 5. Prenucleation Cluster Mechanism
  • 6. In Situ Characterization Techniques
  • 7. Conclusions
  • References.