Cargando…

A contemporary study of iterative methods : convergence, dynamics and applications /

A Contemporary Study of Iterative Methods: Convergence, Dynamics and Applications evaluates and compares advances in iterative techniques, also discussing their numerous applications in applied mathematics, engineering, mathematical economics, mathematical biology and other applied sciences. It uses...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Magre�n�an, �A. Alberto (�Angel Alberto) (Autor), Argyros, Ioannis K. (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: London, United Kingdom : Academic Press, an imprint of Elsevier, 2018.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Chapter 1. The majorization method in the Kantorovich theory
  • Chapter 2. Directional Newton methods
  • Chapter 3. Newton's method
  • Chapter 4. Generalized equations
  • Chapter 5. Gauss-Newton method
  • Chapter 6. Gauss-Newton method for convex optimization
  • Chapter 7. Proximal Gauss-Newton method
  • Chapter 8. Multistep modified Newton-Hermitian and Skew-Hermitian Splitting method
  • Chapter 9. Secant-like methods in chemistry
  • Chapter 10. Robust convergence of Newton's method for cone inclusion problem
  • Chapter 11. Gauss-Newton method for convex composite optimization
  • Chapter 12. Domain of parameters
  • Chapter 13. Newton's method for solving optimal shape design problems
  • Chapter 14. Osada method
  • Chapter 15. Newton's method to solve equations with solutions of multiplicity greater than one
  • Chapter 16. Laguerre-like method for multiple zeros
  • Chapter 17. Traub's method for multiple roots
  • Chapter 18. Shadowing lemma for operators with chaotic behavior
  • Chapter 19. Inexact two-point Newton-like methods
  • Chapter 20. Two-step Newton methods
  • Chapter 21. Introduction to complex dynamics
  • Chapter 22. Convergence and the dynamics of Chebyshev-Halley type methods
  • Chapter 23. Convergence planes of iterative methods
  • Chapter 24. Convergence and dynamics of a higher order family of iterative methods
  • Chapter 25. Convergence of iterative methods for multiple zeros