Cargando…

A contemporary study of iterative methods : convergence, dynamics and applications /

A Contemporary Study of Iterative Methods: Convergence, Dynamics and Applications evaluates and compares advances in iterative techniques, also discussing their numerous applications in applied mathematics, engineering, mathematical economics, mathematical biology and other applied sciences. It uses...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Magre�n�an, �A. Alberto (�Angel Alberto) (Autor), Argyros, Ioannis K. (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: London, United Kingdom : Academic Press, an imprint of Elsevier, 2018.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 SCIDIR_on1025343153
003 OCoLC
005 20231120010247.0
006 m o d
007 cr cnu---unuuu
008 180228s2018 enk o 001 0 eng d
040 |a OPELS  |b eng  |e rda  |e pn  |c OPELS  |d YDX  |d OCLCF  |d UAB  |d SNK  |d OCLCQ  |d D6H  |d AU@  |d U3W  |d LVT  |d EBLCP  |d OCLCQ  |d OSU  |d S2H  |d OCLCO  |d OCLCQ  |d OCLCO  |d K6U  |d OCLCQ  |d SFB  |d OCLCQ  |d HNC  |d OCLCO 
019 |a 1028679039  |a 1028783054  |a 1028857475  |a 1028892462  |a 1028949264  |a 1028971236  |a 1029005549  |a 1029209362 
020 |a 9780128094938 
020 |a 0128094931 
020 |z 9780128092149  |q (print) 
020 |z 0128092149 
035 |a (OCoLC)1025343153  |z (OCoLC)1028679039  |z (OCoLC)1028783054  |z (OCoLC)1028857475  |z (OCoLC)1028892462  |z (OCoLC)1028949264  |z (OCoLC)1028971236  |z (OCoLC)1029005549  |z (OCoLC)1029209362 
050 4 |a QA297.8 
082 0 4 |a 518/.26  |2 23 
100 1 |a Magre�n�an, �A. Alberto  |q (�Angel Alberto),  |e author. 
245 1 2 |a A contemporary study of iterative methods :  |b convergence, dynamics and applications /  |c �A. Alberto Magre�n�an, Ioannis K. Argyros. 
264 1 |a London, United Kingdom :  |b Academic Press, an imprint of Elsevier,  |c 2018. 
300 |a 1 online resource (xiv, 385 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
500 |a Includes index. 
505 0 |a Chapter 1. The majorization method in the Kantorovich theory -- Chapter 2. Directional Newton methods -- Chapter 3. Newton's method -- Chapter 4. Generalized equations -- Chapter 5. Gauss-Newton method -- Chapter 6. Gauss-Newton method for convex optimization -- Chapter 7. Proximal Gauss-Newton method -- Chapter 8. Multistep modified Newton-Hermitian and Skew-Hermitian Splitting method -- Chapter 9. Secant-like methods in chemistry -- Chapter 10. Robust convergence of Newton's method for cone inclusion problem -- Chapter 11. Gauss-Newton method for convex composite optimization -- Chapter 12. Domain of parameters -- Chapter 13. Newton's method for solving optimal shape design problems -- Chapter 14. Osada method -- Chapter 15. Newton's method to solve equations with solutions of multiplicity greater than one -- Chapter 16. Laguerre-like method for multiple zeros -- Chapter 17. Traub's method for multiple roots -- Chapter 18. Shadowing lemma for operators with chaotic behavior -- Chapter 19. Inexact two-point Newton-like methods -- Chapter 20. Two-step Newton methods -- Chapter 21. Introduction to complex dynamics -- Chapter 22. Convergence and the dynamics of Chebyshev-Halley type methods -- Chapter 23. Convergence planes of iterative methods -- Chapter 24. Convergence and dynamics of a higher order family of iterative methods -- Chapter 25. Convergence of iterative methods for multiple zeros 
588 0 |a Online resource; title from PDF title page (ScienceDirect, viewed February 28, 2018). 
520 |a A Contemporary Study of Iterative Methods: Convergence, Dynamics and Applications evaluates and compares advances in iterative techniques, also discussing their numerous applications in applied mathematics, engineering, mathematical economics, mathematical biology and other applied sciences. It uses the popular iteration technique in generating the approximate solutions of complex nonlinear equations that is suitable for aiding in the solution of advanced problems in engineering, mathematical economics, mathematical biology and other applied sciences. Iteration methods are also applied for solving optimization problems. In such cases, the iteration sequences converge to an optimal solution of the problem at hand. 
650 0 |a Iterative methods (Mathematics) 
650 6 |a It�eration (Math�ematiques)  |0 (CaQQLa)201-0091650 
650 7 |a Iterative methods (Mathematics)  |2 fast  |0 (OCoLC)fst00980827 
700 1 |a Argyros, Ioannis K.,  |e author. 
776 0 8 |i Print version:  |a Magre�n�an, �A. Alberto (�Angel Alberto).  |t A contemporary study of iterative methods.  |d London, United Kingdom : Academic Press, an imprint of Elsevier, 2018  |z 9780128092149  |z 0128092149  |w (OCoLC)1001456596 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/book/9780128092149  |z Texto completo