Cargando…

Fundamentals of advanced mathematics. 2, Field extensions, topology and topological vector spaces, functional spaces, and sheaves /

The three volumes of this series of books, of which this is the second, put forward the mathematical elements that make up the foundations of a number of contemporary scientific methods: modern theory on systems, physics and engineering. Whereas the first volume focused on the formal conditions for...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Bourles, Henri (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: London, UK : Kidlington, Oxford, UK : ISTE Press ; Elsevier, 2018.
Colección:New mathematical methos, systems and applications set.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 SCIDIR_on1020789539
003 OCoLC
005 20231120010242.0
006 m o d
007 cr cnu|||unuuu
008 180130s2018 enka ob 001 0 eng d
040 |a N$T  |b eng  |e rda  |e pn  |c N$T  |d EBLCP  |d N$T  |d NLE  |d OCLCF  |d YDX  |d OPELS  |d STF  |d UAB  |d MERER  |d D6H  |d OCLCQ  |d EZ9  |d SNK  |d OCLCQ  |d U3W  |d LVT  |d LQU  |d UKMGB  |d S2H  |d OCLCO  |d OCLCQ  |d OCLCO  |d K6U  |d OCLCQ  |d SFB  |d OCLCQ  |d OCLCO 
015 |a GBB803831  |2 bnb 
016 7 |a 018668602  |2 Uk 
019 |a 1021094463  |a 1105174405  |a 1105561278 
020 |a 9780081023853  |q (electronic bk.) 
020 |a 0081023855  |q (electronic bk.) 
020 |z 9781785482496 
020 |z 1785482491 
035 |a (OCoLC)1020789539  |z (OCoLC)1021094463  |z (OCoLC)1105174405  |z (OCoLC)1105561278 
050 4 |a QA36 
072 7 |a MAT  |x 039000  |2 bisacsh 
072 7 |a MAT  |x 023000  |2 bisacsh 
072 7 |a MAT  |x 026000  |2 bisacsh 
082 0 4 |a 510  |2 23 
100 1 |a Bourles, Henri,  |e author. 
245 1 0 |a Fundamentals of advanced mathematics.  |n 2,  |p Field extensions, topology and topological vector spaces, functional spaces, and sheaves /  |c Henri Bourl�es. 
246 3 0 |a Field extensions, topology and topological vector spaces, functional spaces, and sheaves 
264 1 |a London, UK :  |b ISTE Press ;  |a Kidlington, Oxford, UK :  |b Elsevier,  |c 2018. 
300 |a 1 online resource :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
336 |a still image  |b sti  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a New mathematical methos, systems and applications set 
505 0 |a Intro; Title page; Table of Contents; Copyright; Preface; Errata for Volume 1; List of Notation; Chapter 1: Field Extensions and Differential Field extensions; Chapter 2: General Topology; Chapter 3: Topological Vector Spaces; Chapter 4: Measure, Integration, Function spaces; Chapter 5: Sheaves; 1: Field Extensions and Differential Field Extensions; Abstract; 1.1 Galois theory; 1.2 Transcendental extensions; 1.3 Differential Galois theory; 1.4 Differentially transcendental extensions; 2: General Topology; Abstract; 2.1 Introduction to general topology; 2.2 Filters and nets. 
505 8 |a 2.3 Topological structures2.4 Uniform structures; 2.5 Bornologies; 2.6 Baire spaces, Polish spaces, Suslin spaces, and Lindel�A�f spaces; 2.7 Uniform function spaces; 2.8 Topological algebra; 3: Topological Vector Spaces; Abstract; 3.1 Introduction; 3.2 General topological vector spaces; 3.3 Locally convex spaces; 3.4 Important types of locally convex spaces; 3.5 Weak topologies; 3.6 Dual of a locally convex space; 3.7 Bidual and reflexivity; 3.8 Additional notes about �a#x84;� and �a#x84;�S-spaces and their duals; 3.9 Continuous multilinear mappings; 3.10 Hilbert spaces; 3.11 Nuclear spaces. 
505 8 |a 4: Measure and Integration, Function SpacesAbstract; 4.1 Measure and integration; 4.2 Functions in a single complex variable; 4.3 Function spaces; 4.4 Generalized function spaces; 5: Sheaves; Abstract; 5.1 Introduction; 5.2 General results about sheaves; 5.3 Sheaves of Modules; 5.4 Cohomology of sheaves; Bibliography; Cited Authors; Index. 
504 |a Includes bibliographical references and index. 
588 0 |a Online resource; title from READ title page (OverDrive, viewed February 05, 2018). 
520 |a The three volumes of this series of books, of which this is the second, put forward the mathematical elements that make up the foundations of a number of contemporary scientific methods: modern theory on systems, physics and engineering. Whereas the first volume focused on the formal conditions for systems of linear equations (in particular of linear differential equations) to have solutions, this book presents the approaches to finding solutions to polynomial equations and to systems of linear differential equations with varying coefficients. Fundamentals of Advanced Mathematics, Volume 2: Field Extensions, Topology and Topological Vector Spaces, Functional Spaces, and Sheaves begins with the classical Galois theory and the theory of transcendental field extensions. Next, the differential side of these theories is treated, including the differential Galois theory (Picard-Vessiot theory of systems of linear differential equations with time-varying coefficients) and differentially transcendental field extensions. The treatment of analysis includes topology (using both filters and nets), topological vector spaces (using the notion of disked space, which simplifies the theory of duality), and the radon measure (assuming that the usual theory of measure and integration is known). In addition, the theory of sheaves is developed with application to the theory of distributions and the theory of hyperfunctions (assuming that the usual theory of functions of the complex variable is known). This volume is the prerequisite to the study of linear systems with time-varying coefficients from the point-of-view of algebraic analysis and the algebraic theory of nonlinear systems. 
650 0 |a Mathematics. 
650 0 |a Field extensions (Mathematics) 
650 0 |a Topology. 
650 0 |a Linear topological spaces. 
650 0 |a Vector fields. 
650 0 |a Sheaf theory. 
650 2 |a Mathematics  |0 (DNLM)D008433 
650 6 |a Math�ematiques.  |0 (CaQQLa)201-0068291 
650 6 |a Extensions de corps (Math�ematiques)  |0 (CaQQLa)201-0042252 
650 6 |a Topologie.  |0 (CaQQLa)201-0001193 
650 6 |a Espaces vectoriels topologiques.  |0 (CaQQLa)201-0001197 
650 6 |a Champs vectoriels.  |0 (CaQQLa)201-0093158 
650 6 |a Th�eorie des faisceaux.  |0 (CaQQLa)201-0008981 
650 7 |a MATHEMATICS  |x Essays.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Pre-Calculus.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Reference.  |2 bisacsh 
650 7 |a Field extensions (Mathematics)  |2 fast  |0 (OCoLC)fst00923887 
650 7 |a Linear topological spaces  |2 fast  |0 (OCoLC)fst00999101 
650 7 |a Mathematics  |2 fast  |0 (OCoLC)fst01012163 
650 7 |a Sheaf theory  |2 fast  |0 (OCoLC)fst01115421 
650 7 |a Topology  |2 fast  |0 (OCoLC)fst01152692 
650 7 |a Vector fields  |2 fast  |0 (OCoLC)fst01164665 
776 0 8 |i Print version:  |a Bourles, Henri.  |t Fundamentals of advanced mathematics. 2, Field extensions, topology and topological vector spaces, functional spaces, and sheaves.  |d London, UK : ISTE Press ; Kidlington, Oxford, UK : Elsevier, 2018  |z 1785482491  |z 9781785482496  |w (OCoLC)988165208 
830 0 |a New mathematical methos, systems and applications set. 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/book/9781785482496  |z Texto completo