|
|
|
|
LEADER |
00000cam a2200000Ma 4500 |
001 |
SCIDIR_on1020639749 |
003 |
OCoLC |
005 |
20231120010242.0 |
006 |
m o d |
007 |
cr cnu---unuuu |
008 |
180127s2018 mau ob 001 0 eng d |
040 |
|
|
|a EBLCP
|b eng
|e pn
|c EBLCP
|d OCLCO
|d N$T
|d YDX
|d N$T
|d NLE
|d OCLCF
|d BUF
|d UAB
|d UPM
|d OCLCQ
|d OCLCO
|d ANS
|d OCLCO
|d OCLCA
|d SOI
|d OCLCO
|d BRX
|d OCLCQ
|d UKMGB
|d OCLCQ
|d OCLCA
|d SCB
|d OCLCO
|d OCLCQ
|d OCLCO
|
015 |
|
|
|a GBB818468
|2 bnb
|
016 |
7 |
|
|a 018693947
|2 Uk
|
019 |
|
|
|a 1020867179
|
020 |
|
|
|a 9780128147184
|q (electronic bk.)
|
020 |
|
|
|a 0128147180
|q (electronic bk.)
|
020 |
|
|
|z 0128147172
|
020 |
|
|
|z 9780128147177
|
035 |
|
|
|a (OCoLC)1020639749
|z (OCoLC)1020867179
|
050 |
|
4 |
|a QP552.I7
|
072 |
|
7 |
|a SCI
|x 007000
|2 bisacsh
|
082 |
0 |
4 |
|a 572.7
|2 23
|
245 |
0 |
0 |
|a Fe-S Cluster Enzymes.
|n Part B /
|c edited by Sheila S. David.
|
250 |
|
|
|a First edition.
|
260 |
|
|
|a Cambridge, Massachusetts :
|b Academic Press,
|c 2018.
|
300 |
|
|
|a 1 online resource (510 pages)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
347 |
|
|
|a data file
|2 rda
|
490 |
1 |
|
|a Methods in enzymology ;
|v vol. 599
|
504 |
|
|
|a Includes bibliographical references and indexes.
|
588 |
0 |
|
|a Print version record.
|
505 |
0 |
|
|a Front Cover; Fe-S Cluster Enzymes Part B; Copyright; Contents; Contributors; Preface; Chapter One: Iron-Sulfur Clusters in DNA Polymerases and Primases of Eukaryotes; 1. Introduction; 2. Iron-Sulfur Clusters in DNA Polymerases and Primase; 2.1. DNA Polymerases at the Replication Fork; 2.2. Iron-Sulfur Cluster in the Large Subunit of DNA Primase; 2.3. Iron-Sulfur Clusters in B-Family DNA Polymerases; 3. Genetic Evidence for the Important Roles of Iron-Sulfur Clusters in DNA Replication In Vivo; 4. Purification of Eukaryotic B-Family DNA Polymerases; 4.1. Procedure; 4.2. Notes.
|
505 |
8 |
|
|a 5. Analysis of Iron Content in Protein Samples5.1. Procedure; 5.2. Notes; Acknowledgment; References; Chapter Two: Fe-S Clusters and MutY Base Excision Repair Glycosylases: Purification, Kinetics, and DNA Affinity Measurements; 1. Introduction; 2. Over Expression and Purification of MutY Homologs; 2.1. Considerations for Isolating MutY Homologs; 2.2. Bacteria as an Overexpression Host; 2.3. Purification of E. coli MutY; 2.4. Purification of a Thermophilic Homolog, G. stearothermophilus MutY; 2.5. MBP-MutY for Higher Yields and Solubility; 2.6. Bacterial Expression of M. musculus Mutyh.
|
505 |
8 |
|
|a 2.7. Eukaryotic Expression System for Production of Homo sapiens MUTYH3. Gel-Based Adenine Glycosylase Assays and Measurements of Kinetic Parameters; 3.1. General Setup and Execution of the Glycosylase Assay; 3.1.1. Radiolabeling the DNA Substrate; 3.1.2. Preparation of a Denaturing Polyacrylamide Gel; 3.1.3. General Assay Setup; 3.1.4. Visualization and Quantitation of Results; 3.1.5. Salt Concentration in Assay Buffer; 3.2. Correcting the Enzyme Concentration for the Percent Active Fraction; 3.3. Determining the Rate of Product Release; 3.4. Assessing the Rate of Glycosidic Bond Cleavage.
|
505 |
8 |
|
|a 4. Gel-Based Assays for Determining MutY-DNA Affinity4.1. General Features and Considerations of Gel-Based Binding Assays With MutY; 4.1.1. Radiolabeling the DNA Substrate; 4.1.2. Preparation of a Nondenaturing Polyacrylamide Gel; 4.1.3. Running an EMSA; 4.1.4. Visualization and Quantitation of Results; 4.2. Measurements of MutY-DNA Dissociation Constants; 4.3. Measurement of DNA Dissociation Rate (koff); 5. Application of Methods to Reveal Roles of the Fe-S Cluster Cofactor in MutY Homologs; Acknowledgments; References.
|
505 |
8 |
|
|a Chapter Three: Cellular Assays for Studying the Fe-S Cluster Containing Base Excision Repair Glycosylase MUTYH and Homologs1. Introduction; 2. Mutation Suppression Activity Measured in Rifampicin Resistance Assays; 2.1. Overview of the Rifampicin Resistance Assay; 2.2. Transformation and Growth of Cells; 2.3. Determining the Mutation Frequency; 2.3.1. Troubleshooting Tips; 2.4. Case Study: Use of Rifampicin Resistance Assay to Characterize Zn-Linchpin Motif in MUTYH; 3. Analysis of MutY-Mediated Repair of Defined Plasmid Substrates in E. coli.
|
500 |
|
|
|a 3.1. Designing a Plasmid-Based Bacterial Cell Assay.
|
650 |
|
0 |
|a Iron-sulfur proteins.
|
650 |
|
2 |
|a Iron-Sulfur Proteins
|0 (DNLM)D007506
|
650 |
|
6 |
|a Ferrosulfoprot�eines.
|0 (CaQQLa)201-0070150
|
650 |
|
7 |
|a SCIENCE
|x Life Sciences
|x Biochemistry.
|2 bisacsh
|
650 |
|
7 |
|a Iron-sulfur proteins
|2 fast
|0 (OCoLC)fst01721284
|
700 |
1 |
|
|a David, Sheila S.,
|e editor.
|
776 |
0 |
8 |
|i Print version:
|a David, Sheila S.
|t Fe-S Cluster Enzymes Part B.
|d San Diego : Elsevier Science, �2018
|z 9780128147177
|
830 |
|
0 |
|a Methods in enzymology ;
|v v. 599.
|
856 |
4 |
0 |
|u https://sciencedirect.uam.elogim.com/science/bookseries/00766879/599
|z Texto completo
|