Cargando…

Thermomechanical Behavior of Dissipative Composite Materials /

Thermomechanical Behavior of Dissipative Composite Materials presents theoretical and numerical tools for studying materials and structures under fully coupled thermomechanical conditions, focusing primarily on composites. The authors cover many aspects of the modeling process and provide the reader...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Chatzigeorgiou, George (Autor)
Otros Autores: Charalambakis, Nicholas, Chemisky, Yves, Meraghni, Fodil
Formato: Electrónico eBook
Idioma:Inglés
Publicado: London ; Oxford : Elsevier Ltd. : ISTE Press - Elsevier, 2018.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Front Cover; Thermomechanical Behavior of Dissipative Composite Materials; Copyright; Contents; Foreword 1; Foreword 2; Preface; Nomenclature; 1. Mathematical Concepts; 1.1. Tensors in Cartesian coordinates; 1.2. Tensors in curvilinear coordinates; 2. Continuum Mechanics and Constitutive Laws; 2.1. Kinematics; 2.2. Kinetics; 2.3. Divergence theorem and Reynolds transport theorem; 2.4. Conservation laws; 2.5. Constitutive law; 2.6. Parameter identification for an elastoplastic material; 3. Computational Methods; 3.1. Thermomechanical problem in weak form; 3.2. Computational procedure
  • 3.3. General algorithm in thermoelasticity3.4. General algorithms in elastoplasticity; 3.5. Special algorithms in viscoelasticity; 3.6. Numerical applications; 4. Concepts for Heterogeneous Media; 4.1. Preliminaries; 4.2. Homogenization engineering approach; 4.3. Mathematical homogenization of periodic media; 5. Composites with Periodic Structure; 5.1. Thermomechanical processes; 5.2. Constitutive law; 5.3. Discussion; 5.4. Example: multilayered composite; 5.5. Numerical applications; 6. Composites with Random Structure; 6.1. Inclusion problems
  • 6.2. Eshelby-based approaches: Linear thermoelastic composites6.3. Nonlinear thermomechanical processes; 6.4. Discussion; 6.5. Example: composite with spherical particles; 6.6. Numerical applications; Appendices; Appendix 1: Average Theorems in Large Deformations; A1.1. Preliminaries; A1.2. Hill�a#x80;#x99;s Lemma and the Hill�a#x80;#x93;Mandel theorem; A1.3. Useful identities; Appendix 2: Periodic Homogenization in Large Deformations; A2.1. Thermomechanical processes; Bibliography; Index; Back Cover