Cargando…

Ulam stability of operators /

Ulam Stability of Operators presents a modern, unified, and systematic approach to the field. Focusing on the stability of functional equations across single variable, difference equations, differential equations, and integral equations, the book collects, compares, unifies, complements, generalizes...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Brzd�ek, Janusz (Autor), Popa, Dorian (Autor), Rasa, Ioan (Autor), Xu, Bing (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: London, United Kingdom : Academic Press, [2018]
Colección:Mathematical analysis and its applications.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 SCIDIR_on1019680709
003 OCoLC
005 20231120010241.0
006 m o d
007 cr cnu|||unuuu
008 180115s2018 enk ob 001 0 eng d
040 |a N$T  |b eng  |e rda  |e pn  |c N$T  |d EBLCP  |d N$T  |d UIU  |d YDX  |d OPELS  |d OCLCF  |d D6H  |d SNK  |d WYU  |d U3W  |d LVT  |d UWO  |d TKN  |d UHL  |d OCLCQ  |d S2H  |d OCLCO  |d REDDC  |d OCLCQ  |d OCLCO  |d OCLCQ  |d K6U  |d OCLCQ  |d SFB  |d OCLCQ  |d OCLCO 
019 |a 1019751467  |a 1069717466  |a 1113634305  |a 1162262718  |a 1229134322  |a 1232032860 
020 |a 9780128098301  |q (electronic bk.) 
020 |a 0128098309  |q (electronic bk.) 
020 |z 9780128098295 
020 |z 0128098295 
035 |a (OCoLC)1019680709  |z (OCoLC)1019751467  |z (OCoLC)1069717466  |z (OCoLC)1113634305  |z (OCoLC)1162262718  |z (OCoLC)1229134322  |z (OCoLC)1232032860 
050 4 |a QA431 
072 7 |a MAT  |x 005000  |2 bisacsh 
072 7 |a MAT  |x 034000  |2 bisacsh 
082 0 4 |a 515/.45  |2 23 
100 1 |a Brzd�ek, Janusz,  |e author. 
245 1 0 |a Ulam stability of operators /  |c authors, Janusz Brzd�ek, Dorian Popa, Ioan Ra�sa, Bing Xu. 
264 1 |a London, United Kingdom :  |b Academic Press,  |c [2018] 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Mathematical analysis and its applications 
504 |a Includes bibliographical references and index. 
588 0 |a Vendor-supplied metadata. 
505 0 |a Front Cover; Ulam Stability of Operators; Copyright; Dedication; Contents; Acknowledgment; Preface; About the Authors; CHAPTER 1: Introduction to Ulam stability theory; 1. Historical background; 2. Stability of additive mapping; 3. Approximate isometries; 4. Other functional equations and inequalities in several variables; 5. Stability of functional equations in a single variable; 6. Iterative stability; 7. Differential and integral equations; 8. Superstability and hyperstability; 9. Composite type equations; 10. Nonstability; References 
505 8 |a CHAPTER 2: Ulam stability of operators in normed spaces1. Introduction; 2. Ulam stability with respect to gauges; 3. Closed operators; 4. Some differential operators on bounded intervals; 5. Stability of the linear differential operator with respect to different norms; 6. Some classical operators from the approximation theory; References; CHAPTER 3: Ulam stability of differential operators; 1. Introduction; 2. Linear differential equation of the first order; 3. Linear differential equation of a higher order with constant coefficients; 4. First-order linear differential operator 
505 8 |a 5. Higher-order linear differential operator6. Partial differential equations; 7. Laplace operator; References; CHAPTER 4: Best constant in Ulam stability; 1. Introduction; 2. Best constant for Cauchy, Jensen, and Quadratic functional equations; 3. Best constant for linear operators; 4. Ulam stability of operators with respect to different norms; References; CHAPTER 5: Ulam stability of operators of polynomial form; 1. Introduction; 2. Auxiliary results; 3. A general stability theorem; 4. Complementary results for the second-order equations 
505 8 |a 5. Linear difference equation with constant coefficients6. Difference equation with a matrix coefficient; 7. Linear functional equations with constant coefficients; 8. Linear differential equations; 9. Integral equations; References; CHAPTER 6: Nonstability theory; 1. Preliminary information; 2. Possible definitions of nonstability; 3. Linear difference equation of the first order; 4. Linear difference equation of a higher order; 5. Linear functional equation of the first order; 6. Linear functional equation of a higher order; References; Index; Back Cover 
520 |a Ulam Stability of Operators presents a modern, unified, and systematic approach to the field. Focusing on the stability of functional equations across single variable, difference equations, differential equations, and integral equations, the book collects, compares, unifies, complements, generalizes, and updates key results. Whenever suitable, open problems are stated in corresponding areas. The book is of interest to researchers in operator theory, difference and functional equations and inequalities, differential and integral equations. 
650 0 |a Functional equations. 
650 6 |a �Equations fonctionnelles.  |0 (CaQQLa)201-0031396 
650 7 |a MATHEMATICS  |x Calculus.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Mathematical Analysis.  |2 bisacsh 
650 7 |a Functional equations  |2 fast  |0 (OCoLC)fst00936067 
700 1 |a Popa, Dorian,  |e author. 
700 1 |a Rasa, Ioan,  |e author. 
700 1 |a Xu, Bing,  |e author. 
776 0 8 |i Print version:  |z 9780128098295  |z 0128098295  |w (OCoLC)992433847 
830 0 |a Mathematical analysis and its applications. 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/book/9780128098295  |z Texto completo