|
|
|
|
LEADER |
00000cam a2200000 i 4500 |
001 |
SCIDIR_on1018307534 |
003 |
OCoLC |
005 |
20231120010240.0 |
006 |
m o d |
007 |
cr cnu|||unuuu |
008 |
180108s2018 enka ob 001 0 eng d |
040 |
|
|
|a N$T
|b eng
|e rda
|e pn
|c N$T
|d N$T
|d EBLCP
|d YDX
|d UIU
|d OPELS
|d OCLCF
|d D6H
|d SNK
|d CASUM
|d OCLCO
|d INT
|d MERER
|d OCLCO
|d OCLCQ
|d U3W
|d OCLCO
|d OCLCQ
|d LVT
|d OCLCA
|d OCLCQ
|d LQU
|d UKMGB
|d UUM
|d S2H
|d OCLCO
|d UX1
|d VT2
|d OCLCA
|d OCLCQ
|d OCLCO
|d K6U
|d OCLCQ
|d OCLCO
|
015 |
|
|
|a GBB7O2247
|2 bnb
|
016 |
7 |
|
|a 101726283
|2 DNLM
|
016 |
7 |
|
|a 018646446
|2 Uk
|
019 |
|
|
|a 1018464505
|a 1031877359
|a 1031927336
|a 1105171139
|a 1105562424
|a 1229542507
|a 1235836139
|
020 |
|
|
|a 9780128117941
|q (electronic bk.)
|
020 |
|
|
|a 012811794X
|q (electronic bk.)
|
020 |
|
|
|z 9780128117620
|
020 |
|
|
|z 0128117621
|
035 |
|
|
|a (OCoLC)1018307534
|z (OCoLC)1018464505
|z (OCoLC)1031877359
|z (OCoLC)1031927336
|z (OCoLC)1105171139
|z (OCoLC)1105562424
|z (OCoLC)1229542507
|z (OCoLC)1235836139
|
050 |
|
4 |
|a QP519.9.I42
|
060 |
|
4 |
|a 2018 D-330
|
060 |
|
4 |
|a QW 525.5.I3
|
072 |
|
7 |
|a HEA
|x 039000
|2 bisacsh
|
072 |
|
7 |
|a MED
|x 014000
|2 bisacsh
|
072 |
|
7 |
|a MED
|x 022000
|2 bisacsh
|
072 |
|
7 |
|a MED
|x 112000
|2 bisacsh
|
072 |
|
7 |
|a MED
|x 045000
|2 bisacsh
|
082 |
0 |
4 |
|a 616.07/56
|2 23
|
245 |
0 |
0 |
|a Handbook of immunoassay technologies :
|b approaches, performances, and applications /
|c editors, Sandeep K. Vashist, John H.T. Luong.
|
264 |
|
1 |
|a London :
|b Academic Press, an imprint of Elsevier,
|c [2018]
|
264 |
|
4 |
|c �2018
|
300 |
|
|
|a 1 online resource :
|b illustrations (some color)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
588 |
0 |
|
|a Online resource; title from PDF title page (EBSCO, viewed January 10, 2018).
|
504 |
|
|
|a Includes bibliographical references and index.
|
520 |
|
|
|a Handbook of Immunoassay Technologies: Approaches, Performances, and Applications unravels the role of immunoassays in the biochemical sciences. During the last four decades, a wide range of immunoassays has been developed, ranging from the conventional enzyme-linked immunosorbent assays, to the smartphone-based point-of-care formats. The advances in rapid biochemical procedures, novel biosensing schemes, fully integrated lab-on-a-chip platforms, prolonged biomolecular storage strategies, device miniaturization and interfacing, and emerging smart system technologies equipped with personalized mobile healthcare tools are paving the way to next-generation immunoassays, and are all discussed in this comprehensive text. Immunoassays play a prominent role in clinical diagnostics as they are the eyes of healthcare professionals, helping them make informed clinical decisions via confirmed disease diagnosis, and thus enabling favorable health outcomes. The faster and reliable diagnosis of infections will further control their spread to uninfected persons. Similarly, immunoassays play a prominent role in veterinary diagnostics, food analysis, environmental monitoring, defense and security, and other bioanalytical settings. Therefore, they enable the detection of a plethora of analytes, which includes disease biomarkers, pathogens, drug impurities, environmental contaminants, allergens, food adulterants, drugs of abuse and various biomolecules.
|
505 |
0 |
|
|a Front Cover -- Handbook of Immunoassay Technologies -- Handbook of Immunoassay Technologies: Approaches, Performances, and Applications -- Copyright -- Contents -- Contributors -- Preface -- OBJECTIVES OF THE BOOK -- SCOPE OF THE BOOK -- TARGET AUDIENCE -- BOOK ORGANIZATION -- 1 -- Immunoassays: An Overview -- 1. OVERVIEW OF IMMUNOASSAYS -- 2. ANTIBODY STRUCTURE -- 3. NEED FOR IMMUNOASSAYS -- 3.1 Clinical -- 3.2 Industrial -- 3.3 Environment and Security -- 3.4 Food -- 3.5 Personalized Healthcare -- 4. IMMUNOASSAY FORMATS -- 5. CONCLUSIONS AND FUTURE TRENDS -- REFERENCES -- 2 -- Antibody Immobilization and Surface Functionalization Chemistries for Immunodiagnostics -- 1. INTRODUCTION -- 2. SURFACE FUNCTIONALIZATION CHEMISTRIES -- 2.1 Hydroxyl Groups -- 2.2 Amino Groups -- 2.3 Carboxyl Groups -- 2.4 Sulfhydryl Groups -- 2.5 Epoxy Groups -- 3. ANTIBODY IMMOBILIZATION CHEMISTRIES -- 3.1 Covalent -- 3.2 Oriented -- 3.3 Noncovalent -- 3.3.1 Adsorption -- 3.3.2 Affinity -- 3.4 Site-Specific -- 3.5 Peptide Nucleic Acid and Deoxyribonucleic Acid-Directed -- 3.6 Recombinant Antibody -- 4. SURFACE CHARACTERIZATION -- 5. CONCLUSIONS, CHALLENGES, AND FUTURE TRENDS -- REFERENCES -- 3 -- Monoclonal Antibody Generation by Phage Display: History, State-of-the-Art, and Future -- 1. INTRODUCTION -- 1.1 History of the Development of Antibody Phage Display -- 1.2 Antibody Formats Used for Phage Display -- 1.3 Further Recombinant Antibody Formats -- 2. PHAGE DISPLAY SELECTION -- 2.1 Advantages of Recombinant Antibody Selection -- 2.2 Guided Selection -- 2.3 Affinity Improvement -- 2.4 Other Selection Technologies -- 3. ANTIBODY LIBRARIES -- 3.1 Immune Libraries -- 3.2 N�ave Natural Libraries -- 3.3 N�ave Semisynthetic Libraries -- 3.4 N�ave Synthetic Libraries -- 3.5 Special Library Designs -- 3.6 Synthetic Libraries From Nonhuman Species.
|
505 |
8 |
|
|a 4. IN VITRO SELECTION OF ANTIBODIES FOR SPECIFIC APPLICATIONS -- 4.1 Tissue Panning for Immunohistochemistry Antibodies -- 4.2 Sandwich Pair Selection, Complex-Specific Antibodies, and Drug Monitoring -- 4.3 Fully Human Controls in Diagnostic Immunoassays -- 4.4 Site-Specific Conjugation -- 5. CONCLUSION AND OUTLOOK -- 5.1 Future -- REFERENCES -- 4 -- Bioanalytical Requirements and Regulatory Guidelines for Immunoassays -- 1. INTRODUCTION -- 2. BIOANALYTICAL REQUIREMENTS FOR AN IMMUNOASSAY -- 2.1 Accuracy -- 2.2 Precision -- 2.3 Selectivity -- 2.4 Sensitivity -- 2.5 Reproducibility -- 2.6 Stability -- 2.7 Recovery -- 2.8 Calibration Curve -- 2.9 Bioanalytical Performance Parameters -- 2.9.1 Limit of Blank -- 2.9.2 Limit of Detection -- 2.9.3 Limit of Quantification -- 2.9.4 Lower Limit of the Linear Interval -- 2.9.5 Lower Limit of the Measuring Interval -- 2.9.6 Errors -- 2.9.7 Carryover -- 2.9.8 Interference -- 2.9.9 Quality Controls -- 2.9.10 Linear Range -- 2.9.11 Analytical Measurement Range -- 2.9.12 Clinically Reportable Range -- 2.9.13 Bias -- 2.9.14 Hook Effect -- 2.9.15 Method Comparison -- 2.9.16 Cross-reactivity -- 3. CRITIQUES AND OUTLOOK -- 4. CONCLUSIONS -- REFERENCES -- 5 -- Enzyme-Linked Immunoassays -- 1. INTRODUCTION -- 2. CONVENTIONAL ENZYME-LINKED IMMUNOASSAYS -- 2.1 Enzyme-Linked Immunosorbent Assay -- 2.1.1 Direct Enzyme-Linked Immunosorbent Assay -- 2.1.2 Indirect Enzyme-Linked Immunosorbent Assay -- 2.1.3 Sandwich Enzyme-Linked Immunosorbent Assay -- 2.2 Competitive Enzyme-Linked Immunoassay -- 3. EMERGING ENZYME-LINKED IMMUNOASSAYS -- 3.1 High-Sensitivity Sandwich Enzyme-Linked Immunoassay -- 3.2 Highly Simplified Rapid Sandwich Enzyme-Linked Immunoassay -- 3.3 Wash-Free Immunoassays -- 3.4 Multiplex Immunoassays -- 3.5 Nano/Micromaterial-Based Enzyme-Linked Immunoassay -- 3.6 Paper-Based Enzyme-Linked Immunoassay.
|
505 |
8 |
|
|a 3.7 Microfluidics-Based Enzyme-Linked Immunoassay -- 3.7.1 Optimiser Enzyme-Linked Immunosorbent Assay -- 3.7.2 Centrifugal Microfluidics-Based Immunoassay -- 3.8 Smartphone-Based Enzyme-Linked Immunoassay -- 4. PORTABLE ANALYZER-BASED IMMUNOASSAYS -- 5. CRITIQUES AND OUTLOOK -- 6. CONCLUSIONS -- REFERENCES -- 6 -- Surface Plasmon Resonance-Based Immunoassays: Approaches, Performance, and Applications -- 1. INTRODUCTION -- 1.1 Surface Plasmon Resonance -- 1.2 Surface Plasmon Resonance Principles -- 1.3 Surface Plasmon Resonance-Based Biosensor Platforms -- 2. SURFACE PLASMON RESONANCE-BASED IMMUNOASSAYS -- 2.1 Antibody Introduction -- 2.2 Antibody Screening Using Surface Plasmon Resonance -- 2.3 Surface Plasmon Resonance Immunoassay Introduction -- 2.3.1 Small Molecular Weight Targets -- 2.3.2 Pathogens and Viruses -- 2.3.3 Disease Targets -- 3. FUTURE TRENDS IN SURFACE PLASMON RESONANCE-BASED IMMUNOASSAYS -- 3.1 Surface Plasmon Resonance-Mass Spectrometry -- 3.2 Surface Plasmon Resonance-Point-of-Care Applications -- 3.2.1 CD-Based Surface Plasmon Resonance -- 3.2.2 Mobile Phone-Surface Plasmon Resonance -- 4. CONCLUSIONS -- ACKNOWLEDGMENTS -- REFERENCES -- 7 -- Lateral Flow Immunoassays -- 1. INTRODUCTION -- 1.1 Lateral Flow Immunoassays -- 1.1.1 History of the Technology -- 1.1.2 Basic Technology -- 1.1.3 Recognition Elements -- 1.1.4 Signal Labels -- 1.1.5 Storage of Lateral Flow Devices -- 2. ADVANCES IN LATERAL FLOW IMMUNOASSAYS -- 2.1 Coupling to a Range of Detection Principles -- 2.2 Multianalyte and Quantitative Lateral Flow Immunoassays -- 2.3 Reading MultiSpot Lateral Flow Assays -- 2.3.1 Lateral Flow Reader for Microarrays -- 2.3.2 Real-Time Video Reader -- 2.3.3 Reading Arrays by a Smartphone Application -- 3. CHALLENGES AND FUTURE DIRECTIONS -- 3.1 Updated SWOT Analysis -- 3.1.1 Weaknesses -- 3.1.2 Opportunities -- 3.1.3 Threats.
|
505 |
8 |
|
|a 3.2 Combination With Amplification Procedures -- 3.3 Integration of Lateral Flow Immunoassays With Paper Diagnostics -- 4. BIBLIOGRAPHIC AND COMMERCIAL DATA -- 5. CONCLUSIONS -- REFERENCES -- 8 -- Paper-Based Immunoassays -- 1. PAPER-BASED IMMUNOASSAYS: STRATEGIES AND DETECTION PRINCIPLES -- 1.1 Colorimetric Method -- 1.1.1 AuNPs -- 1.1.2 Enzymes -- 1.1.3 Carbon Nanoparticles -- 1.1.4 Magnetic Nanoparticles -- 1.2 Thermal Method -- 1.3 Electrochemical Method -- 1.4 Magnetic Method -- 2. DEVELOPMENT OF THE PAPER-BASED IMMUNOASSAYS DEVICES -- 2.1 Sensitivity Improvement -- 2.2 Automatic Detections -- 2.3 Semiquantification Detection and Quantification Detection -- 3. CONCLUSIONS -- REFERENCES -- 9 -- Acoustic Wave-Based Immunoassays -- 1. INTRODUCTION -- 2. CLINICAL DIAGNOSTICS -- 2.1 Quartz Crystal Microbalance Immunosensors -- 2.1.1 Direct Immunosensors -- 2.1.2 Indirect Immunosensors -- 2.1.3 Sandwich-Amplified Immunosensors -- 2.2 Surface Acoustic Wave Immunosensors -- 2.2.1 Direct Immunosensors -- 3. DETECTION OF MICROBIAL PATHOGENS AND TOXINS -- 3.1 Quartz Crystal Microbalance Immunosensors -- 3.1.1 Direct Immunosensors -- 3.1.2 Indirect Immunosensors -- 3.1.3 Sandwich-Amplified Immunosensors -- 3.2 Surface Acoustic Wave Immunosensors -- 3.2.1 Direct Immunosensors -- 3.2.2 Sandwich-Amplified Immunosensors -- 4. DETECTION OF PARASITES -- 4.1 Quartz Crystal Microbalance Immunosensors -- 4.1.1 Direct Immunosensors -- 4.1.2 Indirect Immunosensors -- 4.1.3 Sandwich-Amplified Immunosensors -- 5. DETECTION OF VIRUSES -- 5.1 Quartz Crystal Microbalance Immunosensors -- 5.1.1 Direct Immunosensors -- 5.1.2 Indirect Immunosensors -- 5.1.3 Sandwich-Amplified Immunosensors -- 5.2 Surface Acoustic Wave Immunosensors -- 6. QUARTZ CRYSTAL MICROBALANCE AND SURFACE ACOUSTIC WAVE-BASED ELECTRONIC NOSES.
|
505 |
8 |
|
|a 7. QUARTZ CRYSTAL MICROBALANCE AND SURFACE ACOUSTIC WAVE IMMUNOASSAYS IN ENVIRONMENTAL MONITORING AND ALLERGENS DETECTION -- 8. INTEGRATED ACOUSTIC WAVE IMMUNOSENSORS FOR POINT OF CARE -- 9. COMMERCIAL ACOUSTIC WAVE IMMUNOSENSORS -- 10. MARKET POTENTIAL AND CONCLUSIONS -- ACKNOWLEDGMENTS -- REFERENCES -- 10 -- Interferometry-Based Immunoassays -- 1. INTRODUCTION: GENERAL CONTEXT -- 2. PRINCIPLES OF OPERATION -- 2.1 Label-Free Optical Sensing -- 2.2 Interferometric Sensors -- 3. SENSOR SURFACE FUNCTIONALIZATION -- 3.1 Chemical Activation of Transducers -- 3.2 Immobilization of Recognition Molecules -- 3.3 Elimination of Nonspecific Binding -- 4. APPLICATION OF INTERFEROMETRIC IMMUNOSENSORS -- 4.1 Mach-Zehnder Interferometers -- 4.2 Young Interferometers -- 4.3 Bimodal Interferometers -- 5. CONCLUSIONS AND FUTURE PERSPECTIVES -- REFERENCES -- 11 -- Nanomaterial- and Micromaterial-Based Immunoassays -- 1. INTRODUCTION -- 2. MICROMATERIAL-BASED IMMUNOASSAY -- 2.1 Fluorescent Polystyrene Microsphere -- 2.2 Magnetic Microbeads -- 2.3 Nanomaterial-Based Immunoassay -- 3. COLORIMETRIC IMMUNOASSAY -- 3.1 Lateral Flow Assay -- 3.2 Plate-Based Colorimetric Immunoassay -- 4. ELECTROCHEMICAL IMMUNOASSAY -- 5. FLUORESCENT IMMUNOASSAY -- 5.1 Heterogeneous Immunoassay -- 5.2 Fluorescence Resonance Energy Transfer Assay -- 6. CONCLUSION -- REFERENCES -- 12 -- Microcantilever-Based Sensors -- 1. INTRODUCTION -- 2. MICROCANTILEVERS AND THEIR MODES OF OPERATION -- 2.1 Operating Modes for Cantilever Mass Sensors -- 3. DETECTION METHODS -- 3.1 Optical -- 3.2 Piezoresistive -- 3.3 Capacitive -- 3.4 Piezoelectric -- 3.5 Interferometry -- 3.6 Optical Diffraction Grating -- 3.7 Charge-Coupled Device -- 4. BENDING BEHAVIOR OF MICROCANTILEVERS -- 5. FABRICATION OF MICROCANTILEVERS -- 6. MICROCANTILEVER-BASED SENSORS -- 6.1 Detection of Biomolecules -- 6.1.1 DNA.
|
650 |
|
0 |
|a Immunoassay.
|
650 |
1 |
2 |
|a Immunoassay
|0 (DNLM)D007118
|
650 |
|
6 |
|a Immunodosage.
|0 (CaQQLa)201-0061199
|
650 |
|
7 |
|a HEALTH & FITNESS
|x Diseases
|x General.
|2 bisacsh
|
650 |
|
7 |
|a MEDICAL
|x Clinical Medicine.
|2 bisacsh
|
650 |
|
7 |
|a MEDICAL
|x Diseases.
|2 bisacsh
|
650 |
|
7 |
|a MEDICAL
|x Evidence-Based Medicine.
|2 bisacsh
|
650 |
|
7 |
|a MEDICAL
|x Internal Medicine.
|2 bisacsh
|
650 |
|
7 |
|a Immunoassay
|2 fast
|0 (OCoLC)fst00967921
|
655 |
|
4 |
|a Internet Resources.
|
700 |
1 |
|
|a Vashist, Sandeep Kumar,
|e editor.
|
700 |
1 |
|
|a Luong, John,
|e editor.
|
776 |
0 |
8 |
|i Print version:
|z 9780128117620
|z 0128117621
|w (OCoLC)1001456627
|
856 |
4 |
0 |
|u https://sciencedirect.uam.elogim.com/science/book/9780128117620
|z Texto completo
|