|
|
|
|
LEADER |
00000cam a2200000Mi 4500 |
001 |
SCIDIR_on1017714331 |
003 |
OCoLC |
005 |
20231120010231.0 |
006 |
m o d |
007 |
cr ||||||||||| |
008 |
171211t20182018ne a ob 001 0 eng d |
010 |
|
|
|a 2018300724
|
040 |
|
|
|a IDEBK
|b eng
|e rda
|c IDEBK
|d OCLCO
|d YDX
|d N$T
|d EBLCP
|d NLE
|d OPELS
|d OCLCF
|d UPM
|d SNK
|d GZM
|d U3W
|d D6H
|d AU@
|d LQU
|d OCLCQ
|d ESU
|d LVT
|d VT2
|d OCLCO
|d OCLCQ
|d SFB
|d OCLCQ
|d OCLCO
|
019 |
|
|
|a 1011673335
|a 1011678698
|a 1012276965
|a 1017587282
|a 1097149092
|a 1105196156
|a 1105563925
|a 1229794805
|a 1235831923
|
020 |
|
|
|a 0128112212
|q (ebk)
|
020 |
|
|
|a 9780128112212
|
020 |
|
|
|z 0128112204
|
020 |
|
|
|z 9780128112205
|
035 |
|
|
|a (OCoLC)1017714331
|z (OCoLC)1011673335
|z (OCoLC)1011678698
|z (OCoLC)1012276965
|z (OCoLC)1017587282
|z (OCoLC)1097149092
|z (OCoLC)1105196156
|z (OCoLC)1105563925
|z (OCoLC)1229794805
|z (OCoLC)1235831923
|
050 |
|
4 |
|a QC454.M6
|
072 |
|
7 |
|a SCI
|x 013010
|2 bisacsh
|
082 |
0 |
4 |
|a 539.6
|2 23
|
245 |
0 |
0 |
|a Frontiers and advances in molecular spectroscopy /
|c edited by Jaan Laane.
|
264 |
|
1 |
|a Amsterdam, Netherlands :
|b Elsevier,
|c 2018.
|
264 |
|
4 |
|c �2018
|
300 |
|
|
|a 1 online resource (788 pages) :
|b illustrations.
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
504 |
|
|
|a Includes bibliographical references at the end of each chapters and index.
|
505 |
0 |
|
|a Front Cover; Frontiers and Advances in Molecular Spectroscopy; Copyright; Contents; Contributors; Preface; Chapter 1: Stark-Induced Adiabatic Passage Processes to Selectively Prepare Vibrationally Excited Single and Superpositio ...; 1. Introduction; 1.1. How Can a Large Ensemble of Molecular Targets be Prepared in a Selected Highly Vibrationally Excited Quantum State W ...; 2. Theory of Stark-Induced Adiabatic Raman Passage; 2.1. Schr�A�dinger Equation for Stimulated Raman Pumping; 2.2. Density Matrix Equation; 2.3. Saturation of Raman Pumping in a High-Pressure Gas Cell
|
505 |
8 |
|
|a 2.4. Bloch Vector Model for Stark-Induced Adiabatic Passage2.5. Rabi Oscillations; 2.6. Coherent Population Return is a Problem for Stark-Induced Population Transfer; 2.7. How Do We Accomplish Stark-Induced Adiabatic Passage Using Pulsed Excitation?; 3. Theoretical Simulation of SARP for H2 v=0v=1 Transitions; 3.1. SARP is a Threshold Phenomenon; 4. Experimental Demonstration of SARP Preparing Single and Superpositions of Quantum States; 4.1. Preparation of a Bi-Axial Superposition State Within a Single Rovibrational H2 (v=1, J=2) Eigenstate
|
505 |
8 |
|
|a 4.2. Demonstration That SARP is a Robust Technique for Preparing a Desired Rovibrational M-Quantum State5. SARP Excitation of a High Vibrational (v=4) Level; 6. Vibrational Ladder Climbing Using Multicolor SARP; 6.1. How Do We Prepare A Diatomic Molecule in An Arbitrary High Vibrational Level?; 6.2. Theory of Four-Photon Three-Color SARP; 6.3. Vibrational Ladder Climbing of H2 Using Three-Color SARP; 6.4. Preparation of H2 (v=6, J=0) Using Three-Color SARP; 6.5. Preparation of a Pair of Loosely Bound H Atoms Using Four-Color Ladder SARP; 7. Other Related Adiabatic Passage Processes
|
505 |
8 |
|
|a 7.1. Stimulated Raman Adiabatic Passage7.2. High Vibrational Excitation Using STIRAP; 7.3. Multicolor STIRAP to Prepare High Vibrational States; 7.4. Stark-Chirped Rapid Adiabatic Passage; 8. Concluding Remarks; Acknowledgments; References; Chapter 2: Advances in Two-Dimensional Correlation Spectroscopy (2DCOS); 1. Introduction; 2. Generalized 2D Correlation Analysis; 2.1. Perturbation-Induced Dynamic Spectra; 2.2. 2D Correlation Analysis of Dynamic Spectra; 2.3. Matrix Notation for 2DCOS; 2.4. Unevenly Sampled Dynamic Spectra; 3. Interpreting 2D Correlation Spectra
|
505 |
8 |
|
|a 3.1. Simulated Model Spectra3.2. Properties of Synchronous Spectrum; 3.3. Properties of Asynchronous Spectrum; 4. Illustrative Example of 2DCOS Application; 5. Advanced Tools in 2DCOS; 5.1. Heterocorrelation Analyses; 5.2. Moving Window 2D Correlation; 5.3. Two-Dimensional Codistribution (2DCDS) Analysis; 5.4. Pareto Scaling; 5.5. Null-Space Projection; 6. Conclusions; References; Chapter 3: Applications of 2D-IR Spectroscopy to Probe the Structural Dynamics of DNA; 1. Introduction; 2. Methodology; 2.1. Obtaining 2D-IR Spectra; 2.2. Spectral Assignment of DNA 2D-IR Spectra
|
650 |
|
0 |
|a Molecular spectroscopy.
|
650 |
|
6 |
|a Spectroscopie mol�eculaire.
|0 (CaQQLa)201-0015101
|
650 |
|
7 |
|a SCIENCE / Chemistry / Analytic.
|2 bisacsh
|
650 |
|
7 |
|a Molecular spectroscopy
|2 fast
|0 (OCoLC)fst01024838
|
700 |
1 |
|
|a Laane, Jaan,
|e editor.
|
776 |
0 |
8 |
|c Original
|z 0128112204
|z 9780128112205
|w (OCoLC)983303362
|
856 |
4 |
0 |
|u https://sciencedirect.uam.elogim.com/science/book/9780128112205
|z Texto completo
|