Cargando…

Design and development of new nanocarriers /

Design and Development of New Nanocarriers focuses on the design and development of new nanocarriers used in pharmaceutical applications that have emerged in recent years. In particular, the pharmaceutical uses of microfluidic techniques, supramolecular design of nanocapsules, smart hydrogels, polym...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Grumezescu, Alexandru Mihai (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Kidlington, Oxford : William Andrew, an imprint of Elsevier, [2018]
Colección:Pharmaceutical nanotechnology series.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 SCIDIR_on1013889107
003 OCoLC
005 20231120010237.0
006 m o d
007 cr cnu|||unuuu
008 171204t20182018enka ob 001 0 eng d
040 |a N$T  |b eng  |e rda  |e pn  |c N$T  |d N$T  |d YDX  |d OPELS  |d IDEBK  |d OCLCF  |d GZM  |d UPM  |d STF  |d MERER  |d OCLCQ  |d D6H  |d NRC  |d CASUM  |d OCLCO  |d U3G  |d UWW  |d U3W  |d OCLCQ  |d CHVBK  |d INT  |d OCLCQ  |d OCLCO  |d LVT  |d OCLCQ  |d S2H  |d OCLCO  |d VT2  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO  |d K6U  |d OCL  |d OCLCQ  |d OCLCO 
066 |c (S 
019 |a 1013951427  |a 1031885444  |a 1031928017  |a 1097087385  |a 1229880637  |a 1235842154 
020 |a 9780128136287  |q (electronic bk.) 
020 |a 0128136286  |q (electronic bk.) 
020 |z 9780128136270 
020 |z 0128136278 
035 |a (OCoLC)1013889107  |z (OCoLC)1013951427  |z (OCoLC)1031885444  |z (OCoLC)1031928017  |z (OCoLC)1097087385  |z (OCoLC)1229880637  |z (OCoLC)1235842154 
050 4 |a RS199.5 
072 7 |a MED  |x 071000  |2 bisacsh 
082 0 4 |a 615.6  |2 23 
245 0 0 |a Design and development of new nanocarriers /  |c edited by Alexan Mihai Grumezescu. 
264 1 |a Kidlington, Oxford :  |b William Andrew, an imprint of Elsevier,  |c [2018] 
264 4 |c �2018 
300 |a 1 online resource :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Pharmaceutical nanotechnology series 
504 |a Includes bibliographical references and index. 
588 0 |a Online resource; title from PDF title page (EBSCO, viewed December, 08, 2017). 
520 |a Design and Development of New Nanocarriers focuses on the design and development of new nanocarriers used in pharmaceutical applications that have emerged in recent years. In particular, the pharmaceutical uses of microfluidic techniques, supramolecular design of nanocapsules, smart hydrogels, polymeric micelles, exosomes and metal nanoparticles are discussed in detail. Written by a diverse group of international researchers, this book is a valuable reference resource for those working in both biomaterials science and the pharmaceutical industry. 
505 0 0 |6 880-01  |g Machine generated contents note:  |g ch. 1  |t Vesicle-based drug carriers: Liposomes, polymersomes, and niosomes /  |r Nily Dan --  |g 1.1.  |t Introduction --  |g 1.2.  |t Amphiphilic Bilayers --  |g 1.3.  |t Liposomal Drug Carriers --  |g 1.4.  |t Polymersome Drug Carriers --  |g 1.5.  |t Niosome Drug Carriers --  |g 1.6.  |t Biomedical Applications --  |g 1.7.  |t Discussion --  |g 1.8.  |t Conclusion --  |t References --  |g ch. 2  |t Recent advances in micellar-like polyelectrolyte/protein complexes: Design and development of biopharmaceutical vehicles /  |r Costas Demetzos --  |g 2.1.  |t Introduction --  |g 2.2.  |t Polyelectrolyte Block Copolymers --  |g 2.2.1.  |t Physicochemical Properties --  |g 2.2.2.  |t Solution Properties of Polyelectrolytes --  |g 2.2.3.  |t Biological Properties --  |g 2.3.  |t Polyelectrolyte -- Protein Complexes --  |g 2.3.1.  |t Preparation and Physicochemical Characterization of Polyelectrolyte-Protein Complexes --  |g 2.3.2.  |t Biological Properties and Biomedical Applications of Polyelectrolyte-Protein Complexes --  |g 2.4.  |t Polyelectrolyte-Protein Complexes Versus Other Nanocarriers --  |g 2.5.  |t Conclusions and Future Perspectives --  |t References --  |t Further Reading --  |g ch. 3  |t Calixarene-based micelles: Properties and applications /  |r Corrada Geraci --  |g 3.1.  |t Introduction --  |g 3.2.  |t Physicochemical Characterization of Micellar Calixarenes --  |g 3.3.  |t Anionic Calixarene Micelles --  |g 3.4.  |t Cationic Calixarene Micelles --  |g 3.5.  |t Micelles Formed by Zwitterionic Calix[4]arene Derivatives --  |g 3.6.  |t Micelles Based on Nonionic Calixarenes --  |g 3.7.  |t Calixarene Reversed Micelles --  |g 3.8.  |t Bicomponent Calixarene-Based Micelles --  |g 3.9.  |t Stimuli Responsive Micellar Calixarenes --  |g 3.10.  |t Biomedical and Pharmaceutical Applications of Micellar Calixarenes --  |g 3.10.1.  |t Micellar Calixarenes as Drug Solubilizers --  |g 3.10.2.  |t Micellar Cationic Calixarene for DNA Binding and Cell Transfection --  |g 3.10.3.  |t Calixarene Micelles for Drug Delivery --  |g 3.10.4.  |t Calixarene Micelles for Imaging, Diagnostic, and Therapy --  |g 3.11.  |t Conclusions --  |t References --  |t Further Reading --  |g ch. 4  |t Preparation of Janus nanoparticles and its application in drug delivery /  |r Akram Nouri --  |g 4.1.  |t Introduction --  |g 4.2.  |t Different Types of Janus Materials --  |g 4.2.1.  |t Inorganic -- Inorganic Janus Materials --  |g 4.2.2.  |t Polymer -- Polymer Janus Materials --  |g 4.2.3.  |t Organic -- Inorganic Janus Materials --  |g 4.3.  |t Different Methods for Fabrication of Janus Nanoparticles --  |g 4.3.1.  |t Self-Assembly --  |g 4.3.2.  |t Masking --  |g 4.3.3.  |t Phase Separation --  |g 4.4.  |t Properties of Janus Nanoparticles --  |g 4.5.  |t Importance of Janus Nanoparticles in Biomedical Field --  |g 4.6.  |t Several Applications of Janus Nanoparticles in Biomedical Fields --  |g 4.7.  |t Conclusion --  |t References --  |g ch. 5  |t Supramolecular design of hydrophobic and hydrophilic polymeric nanoparticles /  |r Maria Palmira D. Gremiao --  |g 5.1.  |t Introduction --  |g 5.2.  |t Supramolecular Design of Polymeric Nanoparticles --  |g 5.2.1.  |t Polymeric Building Blocks for the Fabrication of Nanoparticles --  |g 5.2.2.  |t Self-Assembly and Supramolecular Forces --  |g 5.2.3.  |t Engineering Hydrophilic Nanoparticles --  |g 5.2.4.  |t Engineering Hydrophobic Nanoparticles --  |g 5.3.  |t Tools and Techniques to Monitor Self-Assemblies --  |g 5.3.1.  |t Static and Dynamic Light Scattering --  |g 5.3.2.  |t Small and Wide Angle X-ray Scattering --  |g 5.3.3.  |t Calorimetry --  |g 5.3.4.  |t Fourier Transform Infrared and Ultraviolet-Visible Light Absorption Spectroscopy --  |g 5.3.5.  |t Fluorescence Spectroscopy --  |g 5.3.6.  |t Nuclear Magnetic Resonance Spectroscopy --  |g 5.3.7.  |t Scanning Electron Microscopy and Transmission Electron Microscopy --  |g 5.3.8.  |t Atomic Force Microscopy --  |g 5.4.  |t Challenges and Future Directions --  |t Acknowledgments --  |t References --  |t Further Reading --  |g ch. 6  |t Cationic polyelectrolyte -- biopolymer complex hydrogel particles for drug delivery /  |r Bibek Laha --  |g 6.1.  |t Introduction --  |g 6.2.  |t Factors Affecting the Synthesis of Polyelectrolyte Complex Hydrogels --  |g 6.3.  |t Drug Delivery Applications --  |g 6.3.1.  |t Poly-L-Lysine Based Systems --  |g 6.3.2.  |t Chitosan-Based Systems --  |g 6.3.3.  |t Polyethyleneimine Complex --  |g 6.3.4.  |t Gelatin Complex --  |g 6.4.  |t Conclusion --  |t References --  |g ch. 7  |t Smart micelleplexes: An overview of a promising and potential nanocarrier for alternative therapies /  |r Francisco Veiga --  |g 7.1.  |t Introduction --  |g 7.1.1.  |t Nucleic Acid-Based Drugs for Alternative Therapies --  |g 7.2.  |t Smart Micelleplexes --  |g 7.2.1.  |t Micelleplexes as Non-Viral Vectors --  |g 7.2.2.  |t Synthesis, Structure and Characterization --  |g 7.2.3.  |t Smart Micelleplexes for Site-Directed Delivery --  |g 7.2.4.  |t Advantages of Smart Micelleplexes --  |g 7.3.  |t Therapeutic Approaches Using Micelleplexes --  |g 7.4.  |t Conclusions and Future Perspectives --  |t Acknowledgments --  |t References --  |g ch. 8  |t Polymeric micelles as a versatile tool in oral chemotherapy /  |r Ana Figueiras --  |g 8.1.  |t Introduction --  |g 8.1.1.  |t Barriers and Intestinal Transport in Oral Drug Delivery Systems --  |g 8.2.  |t Overview of Oral Chemotherapy --  |g 8.3.  |t Polymeric Micelles --  |g 8.3.1.  |t Advances in Polymers and Copolymers --  |g 8.3.2.  |t Definition, Structure and Preparation --  |g 8.3.3.  |t Polymeric Micelles With Modified Surface --  |g 8.3.4.  |t Diagnostic by Polymeric Micelles --  |g 8.4.  |t Polymeric Micelles as an Alternative Strategy for Oral Chemotherapy --  |g 8.5.  |t Polymeric Micelles in Cancer Clinical Trials --  |g 8.6.  |t Conclusions and Future Perspectives --  |t Acknowledgments --  |t References --  |g ch. 9  |t Mixed micelles as drug delivery nanocarriers /  |r Beata Chudzik-Rzad --  |g 9.1.  |t Physicochemical Basis for Mixed Micelles Formation --  |g 9.1.1.  |t Excipients --  |g 9.1.2.  |t Micellization Process --  |g 9.2.  |t Mixed Micelles as Drug Delivery Nanocarriers --  |g 9.2.1.  |t Excipients --  |g 9.2.2.  |t Optimizing Micellar Properties --  |g 9.2.3.  |t Mixed Micelle Formation --  |g 9.2.4.  |t Mixed Micellar Characterization --  |g 9.3.  |t Solubilization of Drugs and Drug-Like Molecules in Mixed Micellar Systems --  |g 9.4.  |t Mixed Micellar Formulation for Antineoplastic Agents --  |g 9.4.1.  |t Micellar Delivery Systems in Cancer Therapy --  |g 9.4.2.  |t Examples of Anticancer Formulations --  |g 9.5.  |t Examples of Other Mixed Micellar Systems --  |g 9.6.  |t Conclusions --  |t References --  |t Further Reading --  |g ch. 10  |t Amphiphilic block copolymers-based micelles for drug delivery /  |r Shafiullah --  |g 10.1.  |t Introduction --  |g 10.2.  |t Amphiphilic block copolymers --  |g 10.3.  |t Micelles formation --  |g 10.3.1.  |t Thermodynamics of Micellization --  |g 10.3.2.  |t Amphiphilic Block Copolymers Micelles Advantages --  |g 10.3.3.  |t Types of Polymeric Micelles --  |g 10.3.4.  |t Drug-Loaded Micelles Preparation --  |g 10.3.5.  |t Factors Affecting Micelles Formation --  |g 10.4.  |t Characterization of block copolymers micelles --  |g 10.4.1.  |t Critical Micelle Concentration --  |g 10.4.2.  |t Size --  |g 10.4.3.  |t Surface Morphology --  |g 10.4.4.  |t Zeta Potential --  |g 10.4.5.  |t Stability --  |g 10.4.6.  |t In Vitro Drug Release Behavior --  |g 10.5.  |t Factors affecting the properties of micelles --  |g 10.5.1.  |t Hydrophilic -- Hydrophobic Balance --  |g 10.5.2.  |t Concentration of the Copolymer --  |g 10.5.3.  |t Drug Loading and Drug Loading Methods --  |g 10.6.  |t Block copolymers micelles applications --  |g 10.6.1.  |t Solubilization of Drugs --  |g 10.6.2.  |t Sustained Release --  |g 10.6.3.  |t Enhanced Oral Bioavailability --  |g 10.6.4.  |t Drug-Targeting Applications --  |g 10.7.  |t Limitations of micelles --  |g 10.7.1.  |t Low Drug Loading and Encapsulation Efficiency --  |g 10.7.2.  |t Poor Stability of the Micelles --  |g 10.8.  |t Conclusion --  |t References --  |g ch. 
505 0 0 |t 11  |t Synthesis and evolution of polymeric nanoparticles: Development of an improved gene delivery system /  |r Surendra Nimesh --  |g 11.1.  |t Introduction --  |g 11.2.  |t Methods for Synthesis of Polymeric Nanoparticles --  |g 11.2.1.  |t Strategies Involved in the Synthesis of Polymeric Nanoparticles --  |g 11.3.  |t Barriers to Successful Gene Delivery Mediated by Polymeric Nanoparticles --  |g 11.3.1.  |t Extracellular Barriers --  |g 11.3.2.  |t Intracellular Barriers --  |g 11.3.3.  |t Nucleic Acid Packaging --  |g 11.3.4.  |t Cell-Specific Delivery --  |g 11.4.  |t Physicochemical Characterization of Polymeric Nanoparticles --  |g 11.4.1.  |t Determination of Size and Size Distribution --  |g 11.4.2.  |t Determination of Surface Charge --  |g 11.4.3.  |t Nanoparticle Tracking Analysis --  |g 11.5.  |t Polymeric Nanoparticles for Gene Delivery --  |g 11.6.  |t Poly(Lactic-Co-Glycolic) Acid --  |g 11.6.1.  |t Lipid-PLGA Hybrid Nanoparticles --  |g 11.6.2.  |t PEI-Modified PLGA Nanoparticles for Enhanced Delivery --  |g 11.6.3.  |t Chitosan-Modified PLGA Nanoparticles --  |g 11.7.  |t Chitosan --  |g 11.7.1.  |t Chitosan in DNA Delivery --  |g 11.7.2.  |t Chitosan in siRNA Delivery --  |g 11.8.  |t Polyethylenemine --  |g 11.8.1.  |t Polyethylenimine in DNA Delivery --  |g 11.8.2.  |t PEI in siRNA Delivery --  |g 11.9.  |t Dendrimers --  |g 11.9.1.  |t Poly(Amidoamine) Dendrimers --  |g 11.9.2.  |t Poly(Propylenimine) Dendrimers --  |g 11.9.3.  |t Carbosilane Dendrimers --  |g 11.10.  |t Polymeric Gene Delivery System in Clinical Trials --  |g 11.11.  |t Conclusion --  |t References --  |g ch. 12  |t Therapeutic protein and drug imprinted nanostructures as controlled delivery tools /  |r Adil Denizli --  |g 12.1.  |t Controlled Delivery of Drugs --  |g 12.2.  |t Polymers for the Drug Delivery Systems --  |g 12.2.1.  |t Nanocarriers for Drug Delivery --  |g 12.3.  |t Molecular Recognition and Molecular Imprinting Technology in Drug Delivery --  |g 12.4.  |t Nanotechnology in Molecular Imprinted Drug Delivery Systems --  |g 12.4.1.  |t Nanoparticles for the Oral Delivery of Therapeutics --  |g 12.4.2.  |t Nanoparticles for the Ocular Delivery of Drugs --  |g 12.4.3.  |t Nanoparticles for the Dermal/Transdermal Drug Delivery --  |g 12.5.  |t Conclusion --  |t References --  |g ch. 13  |t Application of complex coacervates in controlled delivery /  |r Ozge K. Heinz --  |g 13.1.  |t Introduction --  |g 13.2.  |t General Aspects of Complex Coacervation --  |g 13.2.1.  |t Synthetic Polyelectrolyte Complexes --  |g 13.2.2.  |t Natural Polyelectrolyte Complexes --  |g 13.3.  |t Models on Formation of Coacervate Systems. 
650 0 |a Drug delivery systems. 
650 0 |a Drugs  |x Design. 
650 0 |a Nanostructures. 
650 0 |a Nanobiotechnology. 
650 0 |a Nanomedicine. 
650 0 |a Drug carriers (Pharmacy) 
650 1 2 |a Drug Carriers  |0 (DNLM)D004337 
650 1 2 |a Nanostructures  |0 (DNLM)D049329 
650 2 |a Drug Delivery Systems  |0 (DNLM)D016503 
650 2 |a Drug Design  |0 (DNLM)D015195 
650 2 |a Nanomedicine  |0 (DNLM)D050997 
650 6 |a Syst�emes d'administration de m�edicaments.  |0 (CaQQLa)000260397 
650 6 |a M�edicaments  |x Conception.  |0 (CaQQLa)201-0203461 
650 6 |a Nanostructures.  |0 (CaQQLa)201-0232666 
650 6 |a Nanobiotechnologie.  |0 (CaQQLa)000286131 
650 6 |a Vecteurs de m�edicaments.  |0 (CaQQLa)000260399 
650 6 |a Nanom�edecine.  |0 (CaQQLa)201-0448752 
650 7 |a MEDICAL  |x Pharmacology.  |2 bisacsh 
650 7 |a Drug carriers (Pharmacy)  |2 fast  |0 (OCoLC)fst00898662 
650 7 |a Drug delivery systems  |2 fast  |0 (OCoLC)fst00898667 
650 7 |a Drugs  |x Design  |2 fast  |0 (OCoLC)fst00898790 
650 7 |a Nanobiotechnology  |2 fast  |0 (OCoLC)fst01894713 
650 7 |a Nanomedicine  |2 fast  |0 (OCoLC)fst01744350 
650 7 |a Nanostructures  |2 fast  |0 (OCoLC)fst01032635 
655 4 |a Internet Resources. 
700 1 |a Grumezescu, Alexandru Mihai,  |e editor. 
776 0 8 |i Print version:  |z 0128136278  |z 9780128136270  |w (OCoLC)991786160 
830 0 |a Pharmaceutical nanotechnology series. 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/book/9780128136270  |z Texto completo 
880 0 |6 505-01/(S  |a 1. Vesicle-based drug carriers: Liposomes, polymersomes, and niosomes -- 2. Recent advances in micellar-like polyelectrolyte/protein complexes: Design and development of biopharmaceutical vehicles -- 3. Calixarene-based micelles: Properties and applications -- 4. Preparation of Janus nanoparticles and its application in drug delivery -- 5. Supramolecular design of hydrophobic and hydrophilic polymeric nanoparticles -- 6. Cationic polyelectrolyte-biopolymer complex hydrogel particles for drug delivery -- 7. Smart micelleplexes: An overview of a promising and potential nanocarrier for alternative therapies -- 8. Polymeric micelles as a versatile tool in oral chemotherapy -- 9. Mixed micelles as drug delivery nanocarriers -- 10. Amphiphilic block copolymers-based micelles for drug delivery -- 11. Synthesis and evolution of polymeric nanoparticles: Development of an improved gene delivery system -- 12. Therapeutic protein and drug imprinted nanostructures as controlled delivery tools -- 13. Application of complex coacervates in controlled delivery -- 14. Hydrogels: Biomedical uses -- 15. Technologies that generate and modify virus-like particles for medical diagnostic and therapy purposes -- 16. Layer-by-Layer coated drug-core nanoparticles as versatile delivery platforms -- 17. Effect of α-dextrin nanoparticles on the structure of iodine complexes with polypeptides and alkali metal halogenides, and on the mechanisms of their anti-human immunodeficiency virus and anticancer activity -- 18. Nanocarriers for the delivery of temozolomide in the treatment of glioblastoma: A review.