Cargando…

Hydraulic fracture modeling /

Hydraulic Fracture Modeling delivers all the pertinent technology and solutions in one product to become the go-to source for petroleum and reservoir engineers. Providing tools and approaches, this multi-contributed reference presents current and upcoming developments for modeling rock fracturing in...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Wu, Yu-Shu (Petroleum engineer) (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cambridge, MA : Gulf Professional Publishing, 2017.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Machine generated contents note: 1. Finite-Element Modeling of the Growth and Interaction of Hydraulic Fractures in Poroelastic Rock Formations / Robert W. Zimmerman
  • 1.1. Introduction
  • 1.2. Computational Framework
  • 1.3. Modeling of Thermoporoelastic Deformation in Fractured Media
  • 1.4. Modeling Discrete Fracture Growth
  • 1.5. Effect of Matrix Poroelasticity on the Growth of a Single Fracture
  • 1.6. Effect of Interaction on the Paths of Two Fluid-Driven Penny-Shaped Cracks
  • 1.7. Thermal Effects on Early Stages of Hydraulic Fracture Growth
  • 1.8. Conclusions
  • References
  • 2. Framework of Integrated Flow
  • Geomechanics
  • Geophysics Simulation for Planar Hydraulic Fracture Propagation / Evan Schankee Um
  • 2.1. Introduction
  • 2.2. Analytical Methods for Vertical Hydraulic Fractures
  • 2.2.1. Two-Dimensional Fracture Models: Perkins-Kern
  • Nordgren and Khristianovic
  • Geertsma
  • de Klerk Fractures
  • 2.2.2. Fracture Propagation and Fracture Widths
  • 2.3. Numerical Simulation of Vertical Hydraulic Fracture Propagation in Three Dimensions
  • 2.3.1. Mathematical Statements and Constitutive Relations
  • 2.3.2. Numerical Discretization and Examples
  • 2.4. Joint Analysis of Geomechanics and Geophysics
  • 2.4.1. Induced Seismicity
  • 2.4.2. Electromagnetic Survey
  • 2.5. Summary
  • References
  • Further Reading
  • 3. Simulation of Multistage Hydraulic Fracturing in Unconventional Reservoirs Using Displacement Discontinuity Method (DDM) / Huiying Tang
  • 3.1. Stress Shadow Effect
  • 3.1.1. Theoretical Analysis
  • 3.1.2. Experimental Observations
  • 3.1.3. Field Observations
  • 3.2. Numerical Approaches for Multistage Hydraulic Fracturing in Unconventional Reservoirs
  • 3.3. Simulation of Multistage Hydraulic Fracturing in Unconventional Reservoirs Using Displacement Discontinuity Method
  • 3.3.1. Governing Equations for Hydraulic Fracture Growth
  • 3.4. Model Validation
  • 3.4.1. Mechanical Calculation Validation
  • 3.4.2. Radial Fracture Propagation
  • 3.5. Application
  • 3.5.1. Fracture Height Growth in Multilayer Formations
  • 3.5.2. Multistage Hydraulic Fracturing
  • 3.6. Conclusions
  • References
  • 4. Quasistatic Discrete Element Modeling of Hydraulic and Thermal Fracturing Processes in Shale and Low-Permeability Crystalline Rocks / Jing Zhou
  • 4.1. Introduction
  • 4.2. Quasistatic Discrete Element Model
  • 4.3. Fracturing of Brittle Crystalline Rock by Thermal Cooling
  • 4.4. Hydraulic Fracturing Modeling by Coupled Quasistatic Discrete Element Model and Conjugate Network Flow Model
  • 4.4.1. Methodology of Coupled Discrete Element Model and Dual Network Flow Model
  • 4.4.2. Simultaneous Propagation of Interacting Fractures
  • 4.4.3. Interaction Between Propagating Hydraulic Fracture and Natural Fracture
  • 4.4.4. Three-Dimensional Simulations of Hydraulic Fracturing
  • References
  • 5. Hydraulic Fracturing Modeling and Its Extension to Reservoir Simulation Based on Extended Finite-Element Method (XFEM) / Jun Yao
  • 5.1. Introduction
  • 5.2. Mathematical Model of Hydraulic Fracture Propagation
  • 5.2.1. Underlying Assumptions
  • 5.2.2. Governing Equations
  • 5.2.3. Fracture Propagation Criteria
  • 5.3. Numerical Scheme for Hydraulic Fracturing
  • 5.3.1. Stress Field With Extended Finite-Element Method
  • 5.3.2. Pressure Field With Finite-Element Method
  • 5.3.3. Coupling Schemes
  • 5.4. Numerical Cases and Results Analysis
  • 5.4.1. Validation of Numerical Model
  • 5.4.2. Effect of Rock Properties
  • 5.4.3. Effect of Fluid Properties
  • 5.4.4. Effect of Natural Fracture
  • 5.5. Modeling of Simultaneous Propagation of Multiple Cluster Fractures
  • 5.5.1. Problem Formulations
  • 5.5.2. Tip Asymptotic Solution
  • 5.5.3. Numerical Algorithm
  • 5.5.4. Numerical Results
  • 5.6. Extensions to Reservoir Hydromechanical Simulation
  • 5.6.1. Coupling Scheme for Extended Finite-Element Method and Embedded Discrete Fracture Model
  • 5.6.2. Numerical Examples
  • 5.7. Conclusions
  • Acknowledgments
  • References
  • 6. Fully Coupled 3-D Hydraulic Fracture Models
  • Development and Validation / Jorge L.
  • Carzon
  • 6.1. Introduction
  • 6.2. Numerical Formulation
  • 6.2.1. Fluid Flow in the Porous Medium
  • 6.2.2. Fracture Nucleation and Propagation
  • 6.2.3. Fluid Flow in the Fracture
  • 6.3. Implementation Scheme
  • 6.3.1. Cohesive Elements
  • 6.3.2. Extended Finite Elements
  • 6.4. Solution Verification
  • 6.4.1. Vertical Planar Khristianovich-Geertsma-de Klerk Fracture
  • 6.4.2. Radial (Penny-Shaped) Fracture
  • 6.5. Model Validation
  • 6.5.1. Laboratory-Scale Model
  • 6.5.2. Field-Scale Model
  • 6.6. Conclusion
  • Nomenclature
  • Acknowledgments
  • References
  • Further Reading
  • 7. Continuum Modeling of Hydraulic Fracturing in Complex Fractured Rock Masses / Chin-Fu Tsang
  • 7.1. Introduction
  • 7.2. TOUGH-FLAC Simulator and Fracture Continuum Approach
  • 7.2.1. TOUGH-FLAC Simulator
  • 7.2.2. Fracture Continuum Approach
  • 7.3. Verification and Demonstration
  • 7.3.1. Hydromechanics in Complex Fractured Rock
  • 7.3.2. Fracture Propagation Across Discontinuities and Geological Layers
  • 7.3.3. Classical Hydraulic Fracturing Stress Measurement Operation
  • 7.4. Concluding Remarks
  • Acknowledgments
  • References
  • 8. Development of a Hydraulic Fracturing Simulator for Single-Well Fracturing Design in Unconventional Reservoirs / Yu-Shu Wu
  • 8.1. Introduction
  • 8.2. Fracture Fluid Characterization
  • 8.3. Fracture Mass Conservation Equations
  • 8.4. Fracture Energy Equation
  • 8.5. Fracture Mechanics Equations
  • 8.6. Fluid Leak-Off Formulation
  • 8.7. Wellbore Mass, Flow, and Energy Equations
  • 8.8. Stress Shadow Effect
  • 8.9. Governing Equation Solution
  • 8.10. Fracture Discretization
  • 8.11. Discretized Fracture Mass and Energy Conservation Equations
  • 8.12. Discretized Fracture Mechanics Equations
  • 8.13. Discretized Wellbore Mass and Energy Conservation Equations
  • 8.14. Wellbore
  • Surroundings Transfer
  • 8.15. Solution of Finite Difference Flow, Energy, and Fracture Mechanics Equations
  • 8.16. Time Step Size Selection
  • 8.17. Example Problems
  • 8.17.1. Radial Fracture Propagation
  • 8.17.2. PKN-Like Fracture Propagation
  • 8.17.3. Field-Type Simulation
  • 8.18. Summary and Conclusions
  • Acknowledgments
  • References
  • 9. Modeling Rock Fracturing Processes With FRACOD / Baotang Shen
  • 9.1. Introduction
  • 9.2. Rock Fracture Propagation Mechanisms and Fracture Criterion
  • 9.3. Theoretical Background of FRACOD
  • 9.4. Coupling Between Rock Fracturing and Thermal and Hydraulic Processes
  • 9.4.1. Rock Fracturing
  • Thermal Coupling
  • 9.4.2. Fracturing
  • Hydraulic Flow Coupling
  • 9.4.3. Hydraulic Flow
  • Thermal Coupling
  • 9.5. Validation and Demonstration Examples
  • 9.5.1. Modeling Biaxial Compressive Test
  • 9.5.2. Modeling Borehole Breakouts
  • 9.5.3. Cooling Fractures in Borehole Wall
  • 9.5.4. Rock Mass Cooling Due to Fluid Flow
  • 9.6. Modeling Hydraulic Fracturing Using FRACOD
  • 9.6.1. Verification Example
  • Hydraulic Fracturing in Intact Rock
  • 9.6.2. Verification Against the Khristianovic
  • Geertsma
  • de Klerk Model
  • 9.6.3. Modeling Fracture Diversion
  • 9.7. Modeling CO2 Geosequestration Experiement Using FRACOD
  • 9.7.1. Fault Reactivation
  • 9.7.2. Caprock Stability
  • 9.8. Conclusions
  • Acknowledgments
  • References
  • 10. Integrated Study for Hydraulic Fracture and Natural Fracture Interactions and Refracturing in Shale Reservoirs / Theerapat Suppachoknirun
  • 10.1. Introduction
  • 10.2. Background
  • 10.3. Coupled Geomechanical and Fluid Flow Model
  • 10.4. Case Study: The Eagle Ford Shale Well Pad Modeling
  • 10.4.1. Complex Discrete Fracture Network Model With Predetermined Fracture Geometry
  • 10.4.2. Complex Discrete Fracture Network Model With Coupled Fracture Growth Simulations
  • 10.4.3. Refracturing
  • 10.5. Discussions and Concluding Remarks
  • Acknowledgments
  • References
  • 11. Development of a Coupled Reservoir
  • Geomechanical Simulator for the Prediction of Caprock Fracturing and Fault Reactivation During CO2 Sequestration in Deep Saline Aquifers / Yu-Shu Wu
  • 11.1. Introduction
  • 11.2. Geomechanical Formulation
  • 11.2.1. Mean Stress Equation
  • 11.2.2. Stress Tensor Components
  • 11.3. Fluid and Heat Flow Formulation
  • 11.4. Discretization and Solution of Governing Equations
  • 11.4.1. Discretization of Simulator Conservation Equations
  • 11.4.2. Solution of Simulator Conservation Equations
  • 11.4.3. Geomechanical Boundary Conditions and Stress Field Initialization
  • 11.5. Permeability and Porosity Dependencies
  • 11.5.1. Isotropic Porous Media
  • 11.5.2. Fractured Media
  • 11.6. Caprock Fracturing and Fault Reactivation
  • 11.6.1. Caprock Tensile Failure
  • 11.6.2. Fault and Fracture Reactivation
  • 11.6.3. Caprock Shear Failure
  • 11.7. Example Simulations
  • 11.7.1. Displacement From a Uniform Load on a Semiinfinite Elastic Medium
  • 11.7.2. Two-Dimensional Mandel-Cryer Effect
  • 11.7.3. Depletion of a Single-Phase Reservoir
  • 11.7.4. In Salah Gas Project
  • 11.7.5. C02 Leakage Through Fault Zones
  • 11.7.6. Fracture of a Concrete Block
  • 11.8. Summary and Conclusions
  • Acknowledgments
  • References
  • 12. Modeling of Cryogenic Fracturing Processes / Lei Wang
  • 12.1. Introduction
  • 12.1.1. Comparison With Hydraulic Fracturing
  • 12.1.2. History of Cryogenic Fracturing
  • 12.2. Physical Process of Cryogenic Fracturing.
  • Note continued: 12.2.1. Fracture Initiation and Propagation
  • 12.2.2. Rock Failure Characteristics
  • 12.3. Numerical Modeling
  • 12.3.1. Assumptions
  • 12.3.2. Heat Transfer and Fluid Flow
  • 12.3.3. Thermal Stress
  • 12.3.4. Failure Criteria
  • 12.3.5. Numerical Scheme
  • 12.3.6. Results
  • 12.4. Conclusions
  • Acknowledgments
  • References
  • 13. Model Validation in Field Applications / Jennifer L. Miskimins
  • 13.1. Introduction
  • 13.2. Pretreatment Model Inputs
  • 13.2.1. Wellbore Friction
  • 13.2.2. Treatment and Wellbore Characterization
  • 13.2.3. Reservoir Characterization
  • 13.2.4. Pretreatment Calibration Techniques
  • 13.3. Posttreatment Model Validation
  • 13.3.1. Data Quality and Verification
  • 13.3.2. Landing Intervals
  • 13.3.3. Treatment Inputs
  • 13.3.4. Pressure Calibration
  • 13.3.5. Geometric Calibration
  • 13.4. Production Validation
  • 13.5. Summary
  • Nomenclature
  • References
  • 14. Hydraulic Fracturing: Experimental Modeling / Christopher Lamei
  • 14.1. Theoretical Background
  • 14.2. Breakdown and Propagation Pressures
  • 14.2.1. Fracture Initiation Pressure
  • 14.2.2. Relief in Pressure
  • 14.3. Fracture Geometries
  • 14.3.1. Planar Geometries
  • 14.3.2. Nonplanar Fracture Geometries
  • 14.4. Fracture Confinement
  • 14.5. Perforation Design for Fracturing
  • 14.5.1. Vertical Wellbore
  • 14.5.2. Horizontal Wells
  • 14.5.3. Practical Applications of Oriented Perforations in Stimulation Techniques
  • 14.5.4. Gravity-Orientated Clustered Perforations
  • 14.5.5. Simulation of Oriented Perforation
  • 14.6. Unconventional Resources Fracturing
  • 14.6.1. Shale Fracturing
  • 14.6.2. Coal Fracturing
  • 14.7. Waterless Fracturing
  • 14.7.1. Chemically Induced Pressure Pulse Fracturing
  • 14.7.2. Cryogenic Fracturing to Increase Stimulated Reservoir Volume
  • References
  • 15. Laboratory Studies to Investigate Subsurface Fracture Mechanics / Timothy J. Kneafsey
  • 15.1. Introduction
  • 15.2. Laboratory Studies of Fracturing
  • 15.2.1. Homogeneous Medium and Anisotropic Medium
  • 15.2.2. Heterogeneous Flawed Media
  • 15.2.3. Homogeneous Medium
  • 15.2.4. Homogeneous Flawed Medium: Joint Effects
  • 15.2.5. Homogeneous and Flawed Media
  • 15.2.6. Homogeneous Medium: Varying Stresses
  • 15.2.7. Homogeneous and Heterogeneous Media
  • 15.2.8. Anisotropic Medium: Joint Effects
  • 15.2.9. Homogeneous Medium: Effect of Borehole Angle
  • 15.2.10. Homogeneous Isotropic Medium
  • 15.2.11. Homogeneous Medium: Borehole Angle
  • 15.2.12. Uniform Medium With Discontinuities
  • 15.2.13. Large Discontinuous Homogeneous Block: Effect of Joint Properties
  • 15.2.14. Large Block Homogeneous and Anisotropic Media
  • 15.2.15. Heterogeneous Flawed Media (Desiccated Cement)
  • 15.2.16. Heterogeneous Flawed Media: Natural Fort Hays Limestone
  • 15.2.17. Homogeneous Media: Water Blasting
  • 15.2.18. Uniform Media: Cryogenic Fracturing
  • 15.2.19. Homogeneous Medium: Different Fracturing Fluid Viscosities
  • 15.2.20. Heterogeneous Large Block Samples: Effect of Slickwater and Gel
  • 15.2.21. Direct Observation of Fracturing in Small Samples
  • 15.2.22. Heterogeneous Media (Shale and Sandstone): Water, Liquid CO2, and Supercritical C02
  • 15.3. Discussion
  • 15.3.1. Stress
  • 15.3.2. Anisotropy
  • 15.3.3. Borehole Angle
  • 15.3.4. Discontinuities
  • 15.3.5. Permeability and Fracturing Fluid Viscosity
  • 15.3.6. Different Technologies
  • 15.3.7. Sample Size
  • 15.4. Conclusions
  • References
  • 16. Fracture Conductivity Under Triaxial Stress Conditions / Azra N. Tutuncu
  • 16.1. Introduction
  • 16.2. Formations Overview
  • 16.3. Sample Preparation for Measurements
  • 16.4. Triaxial Test Experimental Setup
  • 16.5. Propped Fracture Conductivity Tests
  • 16.6. Conclusions
  • Acknowledgments
  • References.