Hydraulic fracture modeling /
Hydraulic Fracture Modeling delivers all the pertinent technology and solutions in one product to become the go-to source for petroleum and reservoir engineers. Providing tools and approaches, this multi-contributed reference presents current and upcoming developments for modeling rock fracturing in...
Clasificación: | Libro Electrónico |
---|---|
Otros Autores: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Cambridge, MA :
Gulf Professional Publishing,
2017.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Machine generated contents note: 1. Finite-Element Modeling of the Growth and Interaction of Hydraulic Fractures in Poroelastic Rock Formations / Robert W. Zimmerman
- 1.1. Introduction
- 1.2. Computational Framework
- 1.3. Modeling of Thermoporoelastic Deformation in Fractured Media
- 1.4. Modeling Discrete Fracture Growth
- 1.5. Effect of Matrix Poroelasticity on the Growth of a Single Fracture
- 1.6. Effect of Interaction on the Paths of Two Fluid-Driven Penny-Shaped Cracks
- 1.7. Thermal Effects on Early Stages of Hydraulic Fracture Growth
- 1.8. Conclusions
- References
- 2. Framework of Integrated Flow
- Geomechanics
- Geophysics Simulation for Planar Hydraulic Fracture Propagation / Evan Schankee Um
- 2.1. Introduction
- 2.2. Analytical Methods for Vertical Hydraulic Fractures
- 2.2.1. Two-Dimensional Fracture Models: Perkins-Kern
- Nordgren and Khristianovic
- Geertsma
- de Klerk Fractures
- 2.2.2. Fracture Propagation and Fracture Widths
- 2.3. Numerical Simulation of Vertical Hydraulic Fracture Propagation in Three Dimensions
- 2.3.1. Mathematical Statements and Constitutive Relations
- 2.3.2. Numerical Discretization and Examples
- 2.4. Joint Analysis of Geomechanics and Geophysics
- 2.4.1. Induced Seismicity
- 2.4.2. Electromagnetic Survey
- 2.5. Summary
- References
- Further Reading
- 3. Simulation of Multistage Hydraulic Fracturing in Unconventional Reservoirs Using Displacement Discontinuity Method (DDM) / Huiying Tang
- 3.1. Stress Shadow Effect
- 3.1.1. Theoretical Analysis
- 3.1.2. Experimental Observations
- 3.1.3. Field Observations
- 3.2. Numerical Approaches for Multistage Hydraulic Fracturing in Unconventional Reservoirs
- 3.3. Simulation of Multistage Hydraulic Fracturing in Unconventional Reservoirs Using Displacement Discontinuity Method
- 3.3.1. Governing Equations for Hydraulic Fracture Growth
- 3.4. Model Validation
- 3.4.1. Mechanical Calculation Validation
- 3.4.2. Radial Fracture Propagation
- 3.5. Application
- 3.5.1. Fracture Height Growth in Multilayer Formations
- 3.5.2. Multistage Hydraulic Fracturing
- 3.6. Conclusions
- References
- 4. Quasistatic Discrete Element Modeling of Hydraulic and Thermal Fracturing Processes in Shale and Low-Permeability Crystalline Rocks / Jing Zhou
- 4.1. Introduction
- 4.2. Quasistatic Discrete Element Model
- 4.3. Fracturing of Brittle Crystalline Rock by Thermal Cooling
- 4.4. Hydraulic Fracturing Modeling by Coupled Quasistatic Discrete Element Model and Conjugate Network Flow Model
- 4.4.1. Methodology of Coupled Discrete Element Model and Dual Network Flow Model
- 4.4.2. Simultaneous Propagation of Interacting Fractures
- 4.4.3. Interaction Between Propagating Hydraulic Fracture and Natural Fracture
- 4.4.4. Three-Dimensional Simulations of Hydraulic Fracturing
- References
- 5. Hydraulic Fracturing Modeling and Its Extension to Reservoir Simulation Based on Extended Finite-Element Method (XFEM) / Jun Yao
- 5.1. Introduction
- 5.2. Mathematical Model of Hydraulic Fracture Propagation
- 5.2.1. Underlying Assumptions
- 5.2.2. Governing Equations
- 5.2.3. Fracture Propagation Criteria
- 5.3. Numerical Scheme for Hydraulic Fracturing
- 5.3.1. Stress Field With Extended Finite-Element Method
- 5.3.2. Pressure Field With Finite-Element Method
- 5.3.3. Coupling Schemes
- 5.4. Numerical Cases and Results Analysis
- 5.4.1. Validation of Numerical Model
- 5.4.2. Effect of Rock Properties
- 5.4.3. Effect of Fluid Properties
- 5.4.4. Effect of Natural Fracture
- 5.5. Modeling of Simultaneous Propagation of Multiple Cluster Fractures
- 5.5.1. Problem Formulations
- 5.5.2. Tip Asymptotic Solution
- 5.5.3. Numerical Algorithm
- 5.5.4. Numerical Results
- 5.6. Extensions to Reservoir Hydromechanical Simulation
- 5.6.1. Coupling Scheme for Extended Finite-Element Method and Embedded Discrete Fracture Model
- 5.6.2. Numerical Examples
- 5.7. Conclusions
- Acknowledgments
- References
- 6. Fully Coupled 3-D Hydraulic Fracture Models
- Development and Validation / Jorge L.
- Carzon
- 6.1. Introduction
- 6.2. Numerical Formulation
- 6.2.1. Fluid Flow in the Porous Medium
- 6.2.2. Fracture Nucleation and Propagation
- 6.2.3. Fluid Flow in the Fracture
- 6.3. Implementation Scheme
- 6.3.1. Cohesive Elements
- 6.3.2. Extended Finite Elements
- 6.4. Solution Verification
- 6.4.1. Vertical Planar Khristianovich-Geertsma-de Klerk Fracture
- 6.4.2. Radial (Penny-Shaped) Fracture
- 6.5. Model Validation
- 6.5.1. Laboratory-Scale Model
- 6.5.2. Field-Scale Model
- 6.6. Conclusion
- Nomenclature
- Acknowledgments
- References
- Further Reading
- 7. Continuum Modeling of Hydraulic Fracturing in Complex Fractured Rock Masses / Chin-Fu Tsang
- 7.1. Introduction
- 7.2. TOUGH-FLAC Simulator and Fracture Continuum Approach
- 7.2.1. TOUGH-FLAC Simulator
- 7.2.2. Fracture Continuum Approach
- 7.3. Verification and Demonstration
- 7.3.1. Hydromechanics in Complex Fractured Rock
- 7.3.2. Fracture Propagation Across Discontinuities and Geological Layers
- 7.3.3. Classical Hydraulic Fracturing Stress Measurement Operation
- 7.4. Concluding Remarks
- Acknowledgments
- References
- 8. Development of a Hydraulic Fracturing Simulator for Single-Well Fracturing Design in Unconventional Reservoirs / Yu-Shu Wu
- 8.1. Introduction
- 8.2. Fracture Fluid Characterization
- 8.3. Fracture Mass Conservation Equations
- 8.4. Fracture Energy Equation
- 8.5. Fracture Mechanics Equations
- 8.6. Fluid Leak-Off Formulation
- 8.7. Wellbore Mass, Flow, and Energy Equations
- 8.8. Stress Shadow Effect
- 8.9. Governing Equation Solution
- 8.10. Fracture Discretization
- 8.11. Discretized Fracture Mass and Energy Conservation Equations
- 8.12. Discretized Fracture Mechanics Equations
- 8.13. Discretized Wellbore Mass and Energy Conservation Equations
- 8.14. Wellbore
- Surroundings Transfer
- 8.15. Solution of Finite Difference Flow, Energy, and Fracture Mechanics Equations
- 8.16. Time Step Size Selection
- 8.17. Example Problems
- 8.17.1. Radial Fracture Propagation
- 8.17.2. PKN-Like Fracture Propagation
- 8.17.3. Field-Type Simulation
- 8.18. Summary and Conclusions
- Acknowledgments
- References
- 9. Modeling Rock Fracturing Processes With FRACOD / Baotang Shen
- 9.1. Introduction
- 9.2. Rock Fracture Propagation Mechanisms and Fracture Criterion
- 9.3. Theoretical Background of FRACOD
- 9.4. Coupling Between Rock Fracturing and Thermal and Hydraulic Processes
- 9.4.1. Rock Fracturing
- Thermal Coupling
- 9.4.2. Fracturing
- Hydraulic Flow Coupling
- 9.4.3. Hydraulic Flow
- Thermal Coupling
- 9.5. Validation and Demonstration Examples
- 9.5.1. Modeling Biaxial Compressive Test
- 9.5.2. Modeling Borehole Breakouts
- 9.5.3. Cooling Fractures in Borehole Wall
- 9.5.4. Rock Mass Cooling Due to Fluid Flow
- 9.6. Modeling Hydraulic Fracturing Using FRACOD
- 9.6.1. Verification Example
- Hydraulic Fracturing in Intact Rock
- 9.6.2. Verification Against the Khristianovic
- Geertsma
- de Klerk Model
- 9.6.3. Modeling Fracture Diversion
- 9.7. Modeling CO2 Geosequestration Experiement Using FRACOD
- 9.7.1. Fault Reactivation
- 9.7.2. Caprock Stability
- 9.8. Conclusions
- Acknowledgments
- References
- 10. Integrated Study for Hydraulic Fracture and Natural Fracture Interactions and Refracturing in Shale Reservoirs / Theerapat Suppachoknirun
- 10.1. Introduction
- 10.2. Background
- 10.3. Coupled Geomechanical and Fluid Flow Model
- 10.4. Case Study: The Eagle Ford Shale Well Pad Modeling
- 10.4.1. Complex Discrete Fracture Network Model With Predetermined Fracture Geometry
- 10.4.2. Complex Discrete Fracture Network Model With Coupled Fracture Growth Simulations
- 10.4.3. Refracturing
- 10.5. Discussions and Concluding Remarks
- Acknowledgments
- References
- 11. Development of a Coupled Reservoir
- Geomechanical Simulator for the Prediction of Caprock Fracturing and Fault Reactivation During CO2 Sequestration in Deep Saline Aquifers / Yu-Shu Wu
- 11.1. Introduction
- 11.2. Geomechanical Formulation
- 11.2.1. Mean Stress Equation
- 11.2.2. Stress Tensor Components
- 11.3. Fluid and Heat Flow Formulation
- 11.4. Discretization and Solution of Governing Equations
- 11.4.1. Discretization of Simulator Conservation Equations
- 11.4.2. Solution of Simulator Conservation Equations
- 11.4.3. Geomechanical Boundary Conditions and Stress Field Initialization
- 11.5. Permeability and Porosity Dependencies
- 11.5.1. Isotropic Porous Media
- 11.5.2. Fractured Media
- 11.6. Caprock Fracturing and Fault Reactivation
- 11.6.1. Caprock Tensile Failure
- 11.6.2. Fault and Fracture Reactivation
- 11.6.3. Caprock Shear Failure
- 11.7. Example Simulations
- 11.7.1. Displacement From a Uniform Load on a Semiinfinite Elastic Medium
- 11.7.2. Two-Dimensional Mandel-Cryer Effect
- 11.7.3. Depletion of a Single-Phase Reservoir
- 11.7.4. In Salah Gas Project
- 11.7.5. C02 Leakage Through Fault Zones
- 11.7.6. Fracture of a Concrete Block
- 11.8. Summary and Conclusions
- Acknowledgments
- References
- 12. Modeling of Cryogenic Fracturing Processes / Lei Wang
- 12.1. Introduction
- 12.1.1. Comparison With Hydraulic Fracturing
- 12.1.2. History of Cryogenic Fracturing
- 12.2. Physical Process of Cryogenic Fracturing.
- Note continued: 12.2.1. Fracture Initiation and Propagation
- 12.2.2. Rock Failure Characteristics
- 12.3. Numerical Modeling
- 12.3.1. Assumptions
- 12.3.2. Heat Transfer and Fluid Flow
- 12.3.3. Thermal Stress
- 12.3.4. Failure Criteria
- 12.3.5. Numerical Scheme
- 12.3.6. Results
- 12.4. Conclusions
- Acknowledgments
- References
- 13. Model Validation in Field Applications / Jennifer L. Miskimins
- 13.1. Introduction
- 13.2. Pretreatment Model Inputs
- 13.2.1. Wellbore Friction
- 13.2.2. Treatment and Wellbore Characterization
- 13.2.3. Reservoir Characterization
- 13.2.4. Pretreatment Calibration Techniques
- 13.3. Posttreatment Model Validation
- 13.3.1. Data Quality and Verification
- 13.3.2. Landing Intervals
- 13.3.3. Treatment Inputs
- 13.3.4. Pressure Calibration
- 13.3.5. Geometric Calibration
- 13.4. Production Validation
- 13.5. Summary
- Nomenclature
- References
- 14. Hydraulic Fracturing: Experimental Modeling / Christopher Lamei
- 14.1. Theoretical Background
- 14.2. Breakdown and Propagation Pressures
- 14.2.1. Fracture Initiation Pressure
- 14.2.2. Relief in Pressure
- 14.3. Fracture Geometries
- 14.3.1. Planar Geometries
- 14.3.2. Nonplanar Fracture Geometries
- 14.4. Fracture Confinement
- 14.5. Perforation Design for Fracturing
- 14.5.1. Vertical Wellbore
- 14.5.2. Horizontal Wells
- 14.5.3. Practical Applications of Oriented Perforations in Stimulation Techniques
- 14.5.4. Gravity-Orientated Clustered Perforations
- 14.5.5. Simulation of Oriented Perforation
- 14.6. Unconventional Resources Fracturing
- 14.6.1. Shale Fracturing
- 14.6.2. Coal Fracturing
- 14.7. Waterless Fracturing
- 14.7.1. Chemically Induced Pressure Pulse Fracturing
- 14.7.2. Cryogenic Fracturing to Increase Stimulated Reservoir Volume
- References
- 15. Laboratory Studies to Investigate Subsurface Fracture Mechanics / Timothy J. Kneafsey
- 15.1. Introduction
- 15.2. Laboratory Studies of Fracturing
- 15.2.1. Homogeneous Medium and Anisotropic Medium
- 15.2.2. Heterogeneous Flawed Media
- 15.2.3. Homogeneous Medium
- 15.2.4. Homogeneous Flawed Medium: Joint Effects
- 15.2.5. Homogeneous and Flawed Media
- 15.2.6. Homogeneous Medium: Varying Stresses
- 15.2.7. Homogeneous and Heterogeneous Media
- 15.2.8. Anisotropic Medium: Joint Effects
- 15.2.9. Homogeneous Medium: Effect of Borehole Angle
- 15.2.10. Homogeneous Isotropic Medium
- 15.2.11. Homogeneous Medium: Borehole Angle
- 15.2.12. Uniform Medium With Discontinuities
- 15.2.13. Large Discontinuous Homogeneous Block: Effect of Joint Properties
- 15.2.14. Large Block Homogeneous and Anisotropic Media
- 15.2.15. Heterogeneous Flawed Media (Desiccated Cement)
- 15.2.16. Heterogeneous Flawed Media: Natural Fort Hays Limestone
- 15.2.17. Homogeneous Media: Water Blasting
- 15.2.18. Uniform Media: Cryogenic Fracturing
- 15.2.19. Homogeneous Medium: Different Fracturing Fluid Viscosities
- 15.2.20. Heterogeneous Large Block Samples: Effect of Slickwater and Gel
- 15.2.21. Direct Observation of Fracturing in Small Samples
- 15.2.22. Heterogeneous Media (Shale and Sandstone): Water, Liquid CO2, and Supercritical C02
- 15.3. Discussion
- 15.3.1. Stress
- 15.3.2. Anisotropy
- 15.3.3. Borehole Angle
- 15.3.4. Discontinuities
- 15.3.5. Permeability and Fracturing Fluid Viscosity
- 15.3.6. Different Technologies
- 15.3.7. Sample Size
- 15.4. Conclusions
- References
- 16. Fracture Conductivity Under Triaxial Stress Conditions / Azra N. Tutuncu
- 16.1. Introduction
- 16.2. Formations Overview
- 16.3. Sample Preparation for Measurements
- 16.4. Triaxial Test Experimental Setup
- 16.5. Propped Fracture Conductivity Tests
- 16.6. Conclusions
- Acknowledgments
- References.