|
|
|
|
LEADER |
00000cam a2200000 i 4500 |
001 |
SCIDIR_on1013889102 |
003 |
OCoLC |
005 |
20231120010236.0 |
006 |
m o d |
007 |
cr cnu|||unuuu |
008 |
171204s2017 mau ob 001 0 eng d |
040 |
|
|
|a N$T
|b eng
|e rda
|e pn
|c N$T
|d EBLCP
|d N$T
|d IDEBK
|d NLE
|d YDX
|d OCLCF
|d OPELS
|d UAB
|d D6H
|d MNU
|d OCLCQ
|d OTZ
|d INT
|d OCLCQ
|d WYU
|d U3W
|d LVT
|d OCLCQ
|d S2H
|d OCLCO
|d OCLCQ
|d OCLCO
|d K6U
|d OCLCQ
|d SFB
|d OCLCQ
|
019 |
|
|
|a 1013952300
|a 1021874742
|
020 |
|
|
|a 9780128129999
|q (electronic bk.)
|
020 |
|
|
|a 0128129999
|q (electronic bk.)
|
020 |
|
|
|z 9780128129982
|
035 |
|
|
|a (OCoLC)1013889102
|z (OCoLC)1013952300
|z (OCoLC)1021874742
|
050 |
|
4 |
|a TN871.255
|
072 |
|
7 |
|a TEC
|x 026000
|2 bisacsh
|
082 |
0 |
4 |
|a 622.3381
|2 23
|
245 |
0 |
0 |
|a Hydraulic fracture modeling /
|c Yu-Shu Wu, editor.
|
264 |
|
1 |
|a Cambridge, MA :
|b Gulf Professional Publishing,
|c 2017.
|
300 |
|
|
|a 1 online resource
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
504 |
|
|
|a Includes bibliographical references and index.
|
588 |
0 |
|
|a Online resource; title from PDF title page (EBSCO, viewed December 12, 2017).
|
520 |
|
|
|a Hydraulic Fracture Modeling delivers all the pertinent technology and solutions in one product to become the go-to source for petroleum and reservoir engineers. Providing tools and approaches, this multi-contributed reference presents current and upcoming developments for modeling rock fracturing including their limitations and problem-solving applications. Fractures are common in oil and gas reservoir formations, and with the ongoing increase in development of unconventional reservoirs, more petroleum engineers today need to know the latest technology surrounding hydraulic fracturing technology such as fracture rock modeling. There is tremendous research in the area but not all located in one place. Covering two types of modeling technologies, various effective fracturing approaches and model applications for fracturing, the book equips today's petroleum engineer with an all-inclusive product to characterize and optimize today's more complex reservoirs.
|
505 |
0 |
0 |
|g Machine generated contents note:
|g 1.
|t Finite-Element Modeling of the Growth and Interaction of Hydraulic Fractures in Poroelastic Rock Formations /
|r Robert W. Zimmerman --
|g 1.1.
|t Introduction --
|g 1.2.
|t Computational Framework --
|g 1.3.
|t Modeling of Thermoporoelastic Deformation in Fractured Media --
|g 1.4.
|t Modeling Discrete Fracture Growth --
|g 1.5.
|t Effect of Matrix Poroelasticity on the Growth of a Single Fracture --
|g 1.6.
|t Effect of Interaction on the Paths of Two Fluid-Driven Penny-Shaped Cracks --
|g 1.7.
|t Thermal Effects on Early Stages of Hydraulic Fracture Growth --
|g 1.8.
|t Conclusions --
|t References --
|g 2.
|t Framework of Integrated Flow -- Geomechanics -- Geophysics Simulation for Planar Hydraulic Fracture Propagation /
|r Evan Schankee Um --
|g 2.1.
|t Introduction --
|g 2.2.
|t Analytical Methods for Vertical Hydraulic Fractures --
|g 2.2.1.
|t Two-Dimensional Fracture Models: Perkins-Kern -- Nordgren and Khristianovic -- Geertsma -- de Klerk Fractures --
|g 2.2.2.
|t Fracture Propagation and Fracture Widths --
|g 2.3.
|t Numerical Simulation of Vertical Hydraulic Fracture Propagation in Three Dimensions --
|g 2.3.1.
|t Mathematical Statements and Constitutive Relations --
|g 2.3.2.
|t Numerical Discretization and Examples --
|g 2.4.
|t Joint Analysis of Geomechanics and Geophysics --
|g 2.4.1.
|t Induced Seismicity --
|g 2.4.2.
|t Electromagnetic Survey --
|g 2.5.
|t Summary --
|t References --
|t Further Reading --
|g 3.
|t Simulation of Multistage Hydraulic Fracturing in Unconventional Reservoirs Using Displacement Discontinuity Method (DDM) /
|r Huiying Tang --
|g 3.1.
|t Stress Shadow Effect --
|g 3.1.1.
|t Theoretical Analysis --
|g 3.1.2.
|t Experimental Observations --
|g 3.1.3.
|t Field Observations --
|g 3.2.
|t Numerical Approaches for Multistage Hydraulic Fracturing in Unconventional Reservoirs --
|g 3.3.
|t Simulation of Multistage Hydraulic Fracturing in Unconventional Reservoirs Using Displacement Discontinuity Method --
|g 3.3.1.
|t Governing Equations for Hydraulic Fracture Growth --
|g 3.4.
|t Model Validation --
|g 3.4.1.
|t Mechanical Calculation Validation --
|g 3.4.2.
|t Radial Fracture Propagation --
|g 3.5.
|t Application --
|g 3.5.1.
|t Fracture Height Growth in Multilayer Formations --
|g 3.5.2.
|t Multistage Hydraulic Fracturing --
|g 3.6.
|t Conclusions --
|t References --
|g 4.
|t Quasistatic Discrete Element Modeling of Hydraulic and Thermal Fracturing Processes in Shale and Low-Permeability Crystalline Rocks /
|r Jing Zhou --
|g 4.1.
|t Introduction --
|g 4.2.
|t Quasistatic Discrete Element Model --
|g 4.3.
|t Fracturing of Brittle Crystalline Rock by Thermal Cooling --
|g 4.4.
|t Hydraulic Fracturing Modeling by Coupled Quasistatic Discrete Element Model and Conjugate Network Flow Model --
|g 4.4.1.
|t Methodology of Coupled Discrete Element Model and Dual Network Flow Model --
|g 4.4.2.
|t Simultaneous Propagation of Interacting Fractures --
|g 4.4.3.
|t Interaction Between Propagating Hydraulic Fracture and Natural Fracture --
|g 4.4.4.
|t Three-Dimensional Simulations of Hydraulic Fracturing --
|t References --
|g 5.
|t Hydraulic Fracturing Modeling and Its Extension to Reservoir Simulation Based on Extended Finite-Element Method (XFEM) /
|r Jun Yao --
|g 5.1.
|t Introduction --
|g 5.2.
|t Mathematical Model of Hydraulic Fracture Propagation --
|g 5.2.1.
|t Underlying Assumptions --
|g 5.2.2.
|t Governing Equations --
|g 5.2.3.
|t Fracture Propagation Criteria --
|g 5.3.
|t Numerical Scheme for Hydraulic Fracturing --
|g 5.3.1.
|t Stress Field With Extended Finite-Element Method --
|g 5.3.2.
|t Pressure Field With Finite-Element Method --
|g 5.3.3.
|t Coupling Schemes --
|g 5.4.
|t Numerical Cases and Results Analysis --
|g 5.4.1.
|t Validation of Numerical Model --
|g 5.4.2.
|t Effect of Rock Properties --
|g 5.4.3.
|t Effect of Fluid Properties --
|g 5.4.4.
|t Effect of Natural Fracture --
|g 5.5.
|t Modeling of Simultaneous Propagation of Multiple Cluster Fractures --
|g 5.5.1.
|t Problem Formulations --
|g 5.5.2.
|t Tip Asymptotic Solution --
|g 5.5.3.
|t Numerical Algorithm --
|g 5.5.4.
|t Numerical Results --
|g 5.6.
|t Extensions to Reservoir Hydromechanical Simulation --
|g 5.6.1.
|t Coupling Scheme for Extended Finite-Element Method and Embedded Discrete Fracture Model --
|g 5.6.2.
|t Numerical Examples --
|g 5.7.
|t Conclusions --
|t Acknowledgments --
|t References --
|g 6.
|t Fully Coupled 3-D Hydraulic Fracture Models -- Development and Validation /
|r Jorge L.
|
505 |
0 |
0 |
|t Carzon --
|g 6.1.
|t Introduction --
|g 6.2.
|t Numerical Formulation --
|g 6.2.1.
|t Fluid Flow in the Porous Medium --
|g 6.2.2.
|t Fracture Nucleation and Propagation --
|g 6.2.3.
|t Fluid Flow in the Fracture --
|g 6.3.
|t Implementation Scheme --
|g 6.3.1.
|t Cohesive Elements --
|g 6.3.2.
|t Extended Finite Elements --
|g 6.4.
|t Solution Verification --
|g 6.4.1.
|t Vertical Planar Khristianovich-Geertsma-de Klerk Fracture --
|g 6.4.2.
|t Radial (Penny-Shaped) Fracture --
|g 6.5.
|t Model Validation --
|g 6.5.1.
|t Laboratory-Scale Model --
|g 6.5.2.
|t Field-Scale Model --
|g 6.6.
|t Conclusion --
|t Nomenclature --
|t Acknowledgments --
|t References --
|t Further Reading --
|g 7.
|t Continuum Modeling of Hydraulic Fracturing in Complex Fractured Rock Masses /
|r Chin-Fu Tsang --
|g 7.1.
|t Introduction --
|g 7.2.
|t TOUGH-FLAC Simulator and Fracture Continuum Approach --
|g 7.2.1.
|t TOUGH-FLAC Simulator --
|g 7.2.2.
|t Fracture Continuum Approach --
|g 7.3.
|t Verification and Demonstration --
|g 7.3.1.
|t Hydromechanics in Complex Fractured Rock --
|g 7.3.2.
|t Fracture Propagation Across Discontinuities and Geological Layers --
|g 7.3.3.
|t Classical Hydraulic Fracturing Stress Measurement Operation --
|g 7.4.
|t Concluding Remarks --
|t Acknowledgments --
|t References --
|g 8.
|t Development of a Hydraulic Fracturing Simulator for Single-Well Fracturing Design in Unconventional Reservoirs /
|r Yu-Shu Wu --
|g 8.1.
|t Introduction --
|g 8.2.
|t Fracture Fluid Characterization --
|g 8.3.
|t Fracture Mass Conservation Equations --
|g 8.4.
|t Fracture Energy Equation --
|g 8.5.
|t Fracture Mechanics Equations --
|g 8.6.
|t Fluid Leak-Off Formulation --
|g 8.7.
|t Wellbore Mass, Flow, and Energy Equations --
|g 8.8.
|t Stress Shadow Effect --
|g 8.9.
|t Governing Equation Solution --
|g 8.10.
|t Fracture Discretization --
|g 8.11.
|t Discretized Fracture Mass and Energy Conservation Equations --
|g 8.12.
|t Discretized Fracture Mechanics Equations --
|g 8.13.
|t Discretized Wellbore Mass and Energy Conservation Equations --
|g 8.14.
|t Wellbore -- Surroundings Transfer --
|g 8.15.
|t Solution of Finite Difference Flow, Energy, and Fracture Mechanics Equations --
|g 8.16.
|t Time Step Size Selection --
|g 8.17.
|t Example Problems --
|g 8.17.1.
|t Radial Fracture Propagation --
|g 8.17.2.
|t PKN-Like Fracture Propagation --
|g 8.17.3.
|t Field-Type Simulation --
|g 8.18.
|t Summary and Conclusions --
|t Acknowledgments --
|t References --
|g 9.
|t Modeling Rock Fracturing Processes With FRACOD /
|r Baotang Shen --
|g 9.1.
|t Introduction --
|g 9.2.
|t Rock Fracture Propagation Mechanisms and Fracture Criterion --
|g 9.3.
|t Theoretical Background of FRACOD --
|g 9.4.
|t Coupling Between Rock Fracturing and Thermal and Hydraulic Processes --
|g 9.4.1.
|t Rock Fracturing -- Thermal Coupling --
|g 9.4.2.
|t Fracturing -- Hydraulic Flow Coupling --
|g 9.4.3.
|t Hydraulic Flow -- Thermal Coupling --
|g 9.5.
|t Validation and Demonstration Examples --
|g 9.5.1.
|t Modeling Biaxial Compressive Test --
|g 9.5.2.
|t Modeling Borehole Breakouts --
|g 9.5.3.
|t Cooling Fractures in Borehole Wall --
|g 9.5.4.
|t Rock Mass Cooling Due to Fluid Flow --
|g 9.6.
|t Modeling Hydraulic Fracturing Using FRACOD --
|g 9.6.1.
|t Verification Example -- Hydraulic Fracturing in Intact Rock --
|g 9.6.2.
|t Verification Against the Khristianovic -- Geertsma -- de Klerk Model --
|g 9.6.3.
|t Modeling Fracture Diversion --
|g 9.7.
|t Modeling CO2 Geosequestration Experiement Using FRACOD --
|g 9.7.1.
|t Fault Reactivation --
|g 9.7.2.
|t Caprock Stability --
|g 9.8.
|t Conclusions --
|t Acknowledgments --
|t References --
|g 10.
|t Integrated Study for Hydraulic Fracture and Natural Fracture Interactions and Refracturing in Shale Reservoirs /
|r Theerapat Suppachoknirun --
|g 10.1.
|t Introduction --
|g 10.2.
|t Background --
|g 10.3.
|t Coupled Geomechanical and Fluid Flow Model --
|g 10.4.
|t Case Study: The Eagle Ford Shale Well Pad Modeling --
|g 10.4.1.
|t Complex Discrete Fracture Network Model With Predetermined Fracture Geometry --
|g 10.4.2.
|t Complex Discrete Fracture Network Model With Coupled Fracture Growth Simulations --
|g 10.4.3.
|t Refracturing --
|g 10.5.
|t Discussions and Concluding Remarks --
|t Acknowledgments --
|t References --
|g 11.
|t Development of a Coupled Reservoir -- Geomechanical Simulator for the Prediction of Caprock Fracturing and Fault Reactivation During CO2 Sequestration in Deep Saline Aquifers /
|r Yu-Shu Wu --
|g 11.1.
|t Introduction --
|g 11.2.
|t Geomechanical Formulation --
|g 11.2.1.
|t Mean Stress Equation --
|g 11.2.2.
|t Stress Tensor Components --
|g 11.3.
|t Fluid and Heat Flow Formulation --
|g 11.4.
|t Discretization and Solution of Governing Equations --
|g 11.4.1.
|t Discretization of Simulator Conservation Equations --
|g 11.4.2.
|t Solution of Simulator Conservation Equations --
|g 11.4.3.
|t Geomechanical Boundary Conditions and Stress Field Initialization --
|g 11.5.
|t Permeability and Porosity Dependencies --
|g 11.5.1.
|t Isotropic Porous Media --
|g 11.5.2.
|t Fractured Media --
|g 11.6.
|t Caprock Fracturing and Fault Reactivation --
|g 11.6.1.
|t Caprock Tensile Failure --
|g 11.6.2.
|t Fault and Fracture Reactivation --
|g 11.6.3.
|t Caprock Shear Failure --
|g 11.7.
|t Example Simulations --
|g 11.7.1.
|t Displacement From a Uniform Load on a Semiinfinite Elastic Medium --
|g 11.7.2.
|t Two-Dimensional Mandel-Cryer Effect --
|g 11.7.3.
|t Depletion of a Single-Phase Reservoir --
|g 11.7.4.
|t In Salah Gas Project --
|g 11.7.5.
|t C02 Leakage Through Fault Zones --
|g 11.7.6.
|t Fracture of a Concrete Block --
|g 11.8.
|t Summary and Conclusions --
|t Acknowledgments --
|t References --
|g 12.
|t Modeling of Cryogenic Fracturing Processes /
|r Lei Wang --
|g 12.1.
|t Introduction --
|g 12.1.1.
|t Comparison With Hydraulic Fracturing --
|g 12.1.2.
|t History of Cryogenic Fracturing --
|g 12.2.
|t Physical Process of Cryogenic Fracturing.
|
505 |
0 |
0 |
|g Note continued:
|g 12.2.1.
|t Fracture Initiation and Propagation --
|g 12.2.2.
|t Rock Failure Characteristics --
|g 12.3.
|t Numerical Modeling --
|g 12.3.1.
|t Assumptions --
|g 12.3.2.
|t Heat Transfer and Fluid Flow --
|g 12.3.3.
|t Thermal Stress --
|g 12.3.4.
|t Failure Criteria --
|g 12.3.5.
|t Numerical Scheme --
|g 12.3.6.
|t Results --
|g 12.4.
|t Conclusions --
|t Acknowledgments --
|t References --
|g 13.
|t Model Validation in Field Applications /
|r Jennifer L. Miskimins --
|g 13.1.
|t Introduction --
|g 13.2.
|t Pretreatment Model Inputs --
|g 13.2.1.
|t Wellbore Friction --
|g 13.2.2.
|t Treatment and Wellbore Characterization --
|g 13.2.3.
|t Reservoir Characterization --
|g 13.2.4.
|t Pretreatment Calibration Techniques --
|g 13.3.
|t Posttreatment Model Validation --
|g 13.3.1.
|t Data Quality and Verification --
|g 13.3.2.
|t Landing Intervals --
|g 13.3.3.
|t Treatment Inputs --
|g 13.3.4.
|t Pressure Calibration --
|g 13.3.5.
|t Geometric Calibration --
|g 13.4.
|t Production Validation --
|g 13.5.
|t Summary --
|t Nomenclature --
|t References --
|g 14.
|t Hydraulic Fracturing: Experimental Modeling /
|r Christopher Lamei --
|g 14.1.
|t Theoretical Background --
|g 14.2.
|t Breakdown and Propagation Pressures --
|g 14.2.1.
|t Fracture Initiation Pressure --
|g 14.2.2.
|t Relief in Pressure --
|g 14.3.
|t Fracture Geometries --
|g 14.3.1.
|t Planar Geometries --
|g 14.3.2.
|t Nonplanar Fracture Geometries --
|g 14.4.
|t Fracture Confinement --
|g 14.5.
|t Perforation Design for Fracturing --
|g 14.5.1.
|t Vertical Wellbore --
|g 14.5.2.
|t Horizontal Wells --
|g 14.5.3.
|t Practical Applications of Oriented Perforations in Stimulation Techniques --
|g 14.5.4.
|t Gravity-Orientated Clustered Perforations --
|g 14.5.5.
|t Simulation of Oriented Perforation --
|g 14.6.
|t Unconventional Resources Fracturing --
|g 14.6.1.
|t Shale Fracturing --
|g 14.6.2.
|t Coal Fracturing --
|g 14.7.
|t Waterless Fracturing --
|g 14.7.1.
|t Chemically Induced Pressure Pulse Fracturing --
|g 14.7.2.
|t Cryogenic Fracturing to Increase Stimulated Reservoir Volume --
|t References --
|g 15.
|t Laboratory Studies to Investigate Subsurface Fracture Mechanics /
|r Timothy J. Kneafsey --
|g 15.1.
|t Introduction --
|g 15.2.
|t Laboratory Studies of Fracturing --
|g 15.2.1.
|t Homogeneous Medium and Anisotropic Medium --
|g 15.2.2.
|t Heterogeneous Flawed Media --
|g 15.2.3.
|t Homogeneous Medium --
|g 15.2.4.
|t Homogeneous Flawed Medium: Joint Effects --
|g 15.2.5.
|t Homogeneous and Flawed Media --
|g 15.2.6.
|t Homogeneous Medium: Varying Stresses --
|g 15.2.7.
|t Homogeneous and Heterogeneous Media --
|g 15.2.8.
|t Anisotropic Medium: Joint Effects --
|g 15.2.9.
|t Homogeneous Medium: Effect of Borehole Angle --
|g 15.2.10.
|t Homogeneous Isotropic Medium --
|g 15.2.11.
|t Homogeneous Medium: Borehole Angle --
|g 15.2.12.
|t Uniform Medium With Discontinuities --
|g 15.2.13.
|t Large Discontinuous Homogeneous Block: Effect of Joint Properties --
|g 15.2.14.
|t Large Block Homogeneous and Anisotropic Media --
|g 15.2.15.
|t Heterogeneous Flawed Media (Desiccated Cement) --
|g 15.2.16.
|t Heterogeneous Flawed Media: Natural Fort Hays Limestone --
|g 15.2.17.
|t Homogeneous Media: Water Blasting --
|g 15.2.18.
|t Uniform Media: Cryogenic Fracturing --
|g 15.2.19.
|t Homogeneous Medium: Different Fracturing Fluid Viscosities --
|g 15.2.20.
|t Heterogeneous Large Block Samples: Effect of Slickwater and Gel --
|g 15.2.21.
|t Direct Observation of Fracturing in Small Samples --
|g 15.2.22.
|t Heterogeneous Media (Shale and Sandstone): Water, Liquid CO2, and Supercritical C02 --
|g 15.3.
|t Discussion --
|g 15.3.1.
|t Stress --
|g 15.3.2.
|t Anisotropy --
|g 15.3.3.
|t Borehole Angle --
|g 15.3.4.
|t Discontinuities --
|g 15.3.5.
|t Permeability and Fracturing Fluid Viscosity --
|g 15.3.6.
|t Different Technologies --
|g 15.3.7.
|t Sample Size --
|g 15.4.
|t Conclusions --
|t References --
|g 16.
|t Fracture Conductivity Under Triaxial Stress Conditions /
|r Azra N. Tutuncu --
|g 16.1.
|t Introduction --
|g 16.2.
|t Formations Overview --
|g 16.3.
|t Sample Preparation for Measurements --
|g 16.4.
|t Triaxial Test Experimental Setup --
|g 16.5.
|t Propped Fracture Conductivity Tests --
|g 16.6.
|t Conclusions --
|t Acknowledgments --
|t References.
|
650 |
|
0 |
|a Hydraulic fracturing
|x Mathematical models.
|
650 |
|
6 |
|a Fracturation hydraulique
|0 (CaQQLa)201-0064799
|x Mod�eles math�ematiques.
|0 (CaQQLa)201-0379082
|
650 |
|
7 |
|a TECHNOLOGY & ENGINEERING
|x Mining.
|2 bisacsh
|
650 |
|
7 |
|a Hydraulic fracturing
|x Mathematical models.
|2 fast
|0 (OCoLC)fst00964646
|
700 |
1 |
|
|a Wu, Yu-Shu
|c (Petroleum engineer),
|e editor.
|
856 |
4 |
0 |
|u https://sciencedirect.uam.elogim.com/science/book/9780128129982
|z Texto completo
|