Computational nuclear engineering and radiological science using python /
Computational Nuclear Engineering and Radiological Science Using Python provides the necessary knowledge users need to embed more modern computing techniques into current practices, while also helping practitioners replace Fortran-based implementations with higher level languages. The book is especi...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
London, England :
Academic Press,
2018.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Front Cover
- Computational Nuclear Engineering and Radiological Science Using PythonTM
- Copyright
- Contents
- About the Author
- Preface
- Acknowledgment
- Part I Introduction to Python for Scienti c Computing
- 1 Getting Started in Python
- 1.1 Why Python?
- 1.1.1 Comments
- 1.1.2 Errors
- 1.1.3 Indentation
- 1.2 Numeric Variables
- 1.2.1 Integers
- 1.2.2 Floating Point Numbers
- 1.2.2.1 Built-in Mathematical Functions
- 1.2.3 Complex Numbers
- 1.3 Strings and Overloading
- 1.4 Input
- 1.5 Branching (If Statements)
- 1.6 Iteration The Great Beyond
- Further Reading
- Problems
- Short Exercises
- Programming Projects
- 1. Harriot's Method for Solving Cubics
- 2 Digging Deeper Into Python
- 2.1 A First Numerical Program
- 2.2 For Loops
- 2.3 Lists and Tuples
- 2.3.1 Lists
- 2.3.2 Tuples
- 2.4 Floats and Numerical Precision
- Further Reading
- Problems
- Short Exercises
- Programming Projects
- 1. Nuclear Reaction Q Values
- 2. Calculating e, the Base of the Natural Logarithm
- 3 Functions, Scoping, Recursion, and Other Miscellany
- 3.1 Functions3.1.1 Calling Functions and Default Arguments
- 3.1.2 Return Values
- 3.2 Docstrings and Help
- 3.3 Scope
- 3.4 Recursion
- 3.5 Modules
- 3.6 Files
- Problems
- Short Exercises
- Programming Projects
- 1. Monte Carlo Integration
- 4 NumPy and Matplotlib
- 4.1 NumPy Arrays
- 4.1.1 Creating Arrays in Neat Ways
- 4.1.2 Operations on Arrays
- 4.1.3 Universal Functions
- 4.1.4 Copying Arrays and Scope
- 4.1.5 Indexing, Slicing, and Iterating
- 4.1.6 NumPy and Complex Numbers
- 4.2 Matplotlib Basics
- 4.2.1 Customizing Plots Further Reading
- Problems
- Short Exercises
- Programming Projects
- 1. Inhour Equation
- 2. Fractal Growth
- 3. Charges in a Plane
- 5 Dictionaries and Functions as Arguments
- 5.1 Dictionaries
- 5.2 Functions Passed to Functions
- 5.3 Lambda Functions
- Problems
- Short Exercises
- Programming Projects
- 1. Plutonium Decay Chain
- 2. Simple Cryptographic Cipher
- 6 Testing and Debugging
- 6.1 Testing Your Code
- 6.2 Debugging
- 6.3 Assertions
- 6.4 Error Handling
- Further Reading
- Problems Short Exercises
- Programming Projects
- 1. Test Function for k-Eigenvalue
- Part II Numerical Methods
- 7 Gaussian Elimination
- 7.1 A Motivating Example
- 7.2 A Function for Solving 3x3 Systems
- 7.3 Gaussian Elimination for a General System
- 7.4 Round off and Pivoting
- 7.5 Time to Solution for Gaussian Elimination
- Further Reading
- Problems
- Short Exercises
- Programming Projects
- 1. Xenon Poisoning
- 2. Flux Capacitor Waste
- 3. Four-Group Reactor Theory
- 4. Matrix Inverse