|
|
|
|
LEADER |
00000cam a2200000 i 4500 |
001 |
SCIDIR_on1013594912 |
003 |
OCoLC |
005 |
20231120010235.0 |
006 |
m o d |
007 |
cr |n||||||||| |
008 |
171201s2018 ne ob 001 0 eng d |
040 |
|
|
|a YDX
|b eng
|e pn
|c YDX
|d N$T
|d IDEBK
|d EBLCP
|d N$T
|d OPELS
|d UAB
|d OCLCF
|d MERER
|d UPM
|d OCLCQ
|d TEFOD
|d UMR
|d D6H
|d OCLCQ
|d U3W
|d INT
|d ITD
|d CEF
|d OCLCQ
|d LVT
|d OCLCQ
|d LQU
|d OCLCQ
|d S2H
|d OCLCO
|d VT2
|d OCLCQ
|d OCLCO
|d K6U
|d OCLCQ
|d SFB
|d OCLCQ
|d OCLCO
|
019 |
|
|
|a 1013541229
|a 1013821179
|a 1105180309
|a 1105574805
|a 1229741496
|a 1235832682
|
020 |
|
|
|a 9780128119693
|q (electronic bk.)
|
020 |
|
|
|a 0128119691
|q (electronic bk.)
|
020 |
|
|
|z 0128119683
|
020 |
|
|
|z 9780128119686
|
035 |
|
|
|a (OCoLC)1013594912
|z (OCoLC)1013541229
|z (OCoLC)1013821179
|z (OCoLC)1105180309
|z (OCoLC)1105574805
|z (OCoLC)1229741496
|z (OCoLC)1235832682
|
050 |
|
4 |
|a TK1001
|
072 |
|
7 |
|a TEC
|x 009070
|2 bisacsh
|
072 |
|
7 |
|a TEC
|x 007000
|2 bisacsh
|
082 |
0 |
4 |
|a 621.31
|2 23
|
245 |
0 |
0 |
|a Big data application in power systems /
|c edited by Reza Arghandeh, Yuxun Zhou.
|
260 |
|
|
|a Amsterdam, Netherlands ;
|a Kidlington, Oxford :
|b Elsevier,
|c �2018.
|
300 |
|
|
|a 1 online resource
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
504 |
|
|
|a Includes bibliographical references and index.
|
520 |
|
|
|a Big Data Application in Power Systems brings together experts from academia, industry and regulatory agencies who share their understanding and discuss the big data analytics applications for power systems diagnostics, operation and control. Recent developments in monitoring systems and sensor networks dramatically increase the variety, volume and velocity of measurement data in electricity transmission and distribution level. The book focuses on rapidly modernizing monitoring systems, measurement data availability, big data handling and machine learning approaches to process high dimensional, heterogeneous and spatiotemporal data. The book chapters discuss challenges, opportunities, success stories and pathways for utilizing big data value in smart grids. Provides expert analysis of the latest developments by global authoritiesContains detailed references for further reading and extended researchProvides additional cross-disciplinary lessons learned from broad disciplines such as statistics, computer science and bioinformaticsFocuses on rapidly modernizing monitoring systems, measurement data availability, big data handling and machine learning approaches to process high dimensional, heterogeneous and spatiotemporal data.
|
650 |
|
0 |
|a Electric power systems.
|
650 |
|
0 |
|a Big data.
|
650 |
|
0 |
|a Smart power grids.
|
650 |
|
6 |
|a R�eseaux �electriques (�Energie)
|0 (CaQQLa)201-0020539
|
650 |
|
6 |
|a Donn�ees volumineuses.
|0 (CaQQLa)000284673
|
650 |
|
6 |
|a R�eseaux �electriques intelligents.
|0 (CaQQLa)000277171
|
650 |
|
7 |
|a TECHNOLOGY & ENGINEERING
|x Mechanical.
|2 bisacsh
|
650 |
|
7 |
|a TECHNOLOGY & ENGINEERING
|x Electrical.
|2 bisacsh
|
650 |
|
7 |
|a Big data
|2 fast
|0 (OCoLC)fst01892965
|
650 |
|
7 |
|a Electric power systems
|2 fast
|0 (OCoLC)fst00905529
|
650 |
|
7 |
|a Smart power grids
|2 fast
|0 (OCoLC)fst01792824
|
700 |
1 |
|
|a Arghandeh, Reza.
|
700 |
1 |
|
|a Zhou, Yuxun.
|
776 |
0 |
8 |
|i Print version:
|z 0128119683
|z 9780128119686
|w (OCoLC)974031345
|
856 |
4 |
0 |
|u https://sciencedirect.uam.elogim.com/science/book/9780128119686
|z Texto completo
|