Quality of experience paradigm in multimedia services : application to OTT video streaming and VoIP services /
The analysis of QoE is not an easy task, especially for multimedia services, because all the factors (technical and non-technical) that directly or indirectly influence the user-perceived quality have to be considered. This book describes different methods to investigate users' QoE from the vie...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Otros Autores: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
London :
ISTEP Press Ltd.,
2017.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Machine generated contents note: ch. 1 Background and Contextual Study
- 1.1. Introduction
- 1.2. Subjective test
- 1.2.1. Controlled environment approach
- 1.2.2. Uncontrolled environment approach
- 1.3. HTTP-based video streaming technologies
- 1.3.1. Video streaming method
- 1.3.2. Adaptive video delivery components
- 1.4. HTTP-based adaptive video streaming methods
- 1.4.1. Traditional streaming versus adaptive streaming
- 1.4.2. Adobe's HTTP Dynamic Streaming (HDS)
- 1.4.3. Microsoft Smooth Streaming (MSS)
- 1.4.4. Apple's HTTP Live Streaming (HLS)
- 1.4.5. MPEG's Dynamic Adaptive Streaming over HTTP (DASH)
- 1.5. Scheduling and power-saving methods
- 1.5.1. Scheduling methods
- 1.5.2. DRX power-saving method'
- ch. 2 Methodologies for Subjective Video Streaming QoE Assessment
- 2.1. Introduction
- 2.2. Metrics affecting the QoE
- 2.2.1. Network parameters
- 2.2.2. Video characteristics
- 2.2.3. Terminal types
- 2.2.4. Psychological factors
- 2.3. Machine learning classification methods
- 2.3.1. Naive Bayes
- 2.3.2. Support vector machines
- 2.3.3. K-nearest neighbors
- 2.3.4. Decision tree
- 2.3.5. Random forest
- 2.3.6. Neural networks
- 2.4. Experimental environment for QoE assessment
- 2.4.1. Controlled environment approach
- 2.4.2. Crowdsourcing environment approach
- 2.5. Testbed experiment
- 2.5.1. Experimental setup
- 2.5.2. Data analysis using ML methods
- 2.6. Analysis of users' profiles
- 2.6.1. Case 1: interesting and non-interesting video contents
- 2.6.2. Case 2: frequency, HD and non-HD video content
- 2.7. Crowdsourcing method
- 2.7.1. Crowdsourcing framework
- 2.7.2. Framework architecture
- 2.7.3. Firefox extension
- 2.7.4. Java application
- 2.8. Conclusion
- ch. 3 Regulating QoE for Adaptive Video Streaming
- 3.1. Introduction
- 3.2. Adaptive streaming architecture
- 3.3. Video encoding
- 3.4. Client-server communication
- 3.5. Rate-adaptive algorithm
- 3.6. System model
- 3.7. Proposed BBF method
- 3.8. Experimental setup
- 3.9. Results
- 3.10. Conclusion
- ch. 4 QoE-based Power Efficient LTE Downlink Scheduler
- 4.1. Introduction
- 4.2. overview of LTE
- 4.3. E-model
- 4.4. DRX mechanism
- 4.5. Methodology and implementation
- 4.5.1. Traditional algorithms
- 4.5.2. Proposed QEPEM
- 4.5.3. Scheduler architecture
- 4.5.4. Scheduling algorithm
- 4.6. Simulation setup
- 4.7. Performance analysis with a fixed Deep Sleep duration of 20 ms
- 4.8. Performance analysis with a fixed Light Sleep duration of 10 ms
- 4.9. Conclusion
- ch. 5 QoE and Power-saving Model for 5G Network
- 5.1. Introduction
- 5.2. QoE and 5G network
- 5.2.1. Cloud-based future cellular network
- 5.2.2. Traffic model
- 5.2.3. QoE modeling and measurement
- 5.3. Optimization models
- 5.3.1. Network design
- 5.3.2. QoE
- 5.4. Results
- 5.5. Power-saving mechanism for UE and VBS
- 5.5.1. User equipment (UE)
- 5.5.2. Base station
- 5.6. Energy consumption model
- 5.6.1. Virtual base station
- 5.6.2. User equipment
- 5.7. Results.