Cargando…

Machine learning : a constraint-based approach /

Annotation

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Gori, Marco (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Amsterdam : Morgan Kaufmann, 2017.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Mi 4500
001 SCIDIR_on1012838766
003 OCoLC
005 20231120010232.0
006 m o d
007 cr |||||||||||
008 170926s2017 ne o 000 0 eng d
040 |a NLE  |b eng  |e rda  |e pn  |c NLE  |d OCLCO  |d OPELS  |d YDX  |d GZM  |d OCLCF  |d MERER  |d UPM  |d SNK  |d OCLCQ  |d D6H  |d U3W  |d OCLCQ  |d WYU  |d LVT  |d LQU  |d UKMGB  |d S2H  |d OCLCO  |d OCLCQ  |d SFB  |d ORMDA  |d OCLCQ  |d OCLCO 
015 |a GBB7I8698  |2 bnb 
016 7 |a 018544502  |2 Uk 
019 |a 1014063614  |a 1018202182  |a 1105175446  |a 1105562578 
020 |a 9780081006702  |q (ePub ebook) 
020 |a 0081006705  |q (ePub ebook) 
020 |z 9780081006597  |q (pbk.) 
020 |z 0081006594 
035 |a (OCoLC)1012838766  |z (OCoLC)1014063614  |z (OCoLC)1018202182  |z (OCoLC)1105175446  |z (OCoLC)1105562578 
050 4 |a Q325.5 
082 0 4 |a 006.3/1  |2 23 
100 1 |a Gori, Marco,  |e author. 
245 1 0 |a Machine learning :  |b a constraint-based approach /  |c Marco Gori. 
264 1 |a Amsterdam :  |b Morgan Kaufmann,  |c 2017. 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
500 |a The Big Picture Learning Principles Linear-Threshold Machines Kernel Machines Deep Architectures Learning and Reasoning with Constraints Epilogue Answers to selected exercises Appendices: Constrained optimization in Finite Dimensions Regularization operators Calculus of variations Index to Notations. 
520 8 |a Annotation  |b Machine Learning: A Constraint-Based Approach provides readers with a refreshing look at the basic models and algorithms of machine learning, with an emphasis on current topics of interest that includes neural networks and kernel machines.The book presents the information in a truly unified manner that is based on the notion of learning from environmental constraints. While regarding symbolic knowledge bases as a collection of constraints, the book draws a path towards a deep integration with machine learning that relies on the idea of adopting multivalued logic formalisms, like in fuzzy systems. A special attention is reserved to deep learning, which nicely fits the constrained- based approach followed in this book.This book presents a simpler unified notion of regularization, which is strictly connected with the parsimony principle, and includes many solved exercises that are classified according to the Donald Knuth ranking of difficulty, which essentially consists of a mix of warm-up exercises that lead to deeper research problems. A software simulator is also included.Presents fundamental machine learning concepts, such as neural networks and kernel machines in a unified mannerProvides in-depth coverage of unsupervised and semi-supervised learningIncludes a software simulator for kernel machines and learning from constraints that also includes exercises to facilitate learningContains 250 solved examples and exercises chosen particularly for their progression of difficulty from simple to complex. 
650 0 |a Machine learning. 
650 0 |a Algorithms. 
650 2 |a Algorithms  |0 (DNLM)D000465 
650 2 |a Machine Learning  |0 (DNLM)D000069550 
650 6 |a Apprentissage automatique.  |0 (CaQQLa)201-0131435 
650 6 |a Algorithmes.  |0 (CaQQLa)201-0001230 
650 7 |a algorithms.  |2 aat  |0 (CStmoGRI)aat300065585 
650 7 |a Algorithms  |2 fast  |0 (OCoLC)fst00805020 
650 7 |a Machine learning  |2 fast  |0 (OCoLC)fst01004795 
776 0 8 |i Print version:  |z 9780081006597 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/book/9780081006597  |z Texto completo