Cargando…

Spatially resolved operando measurements in heterogeneous catalytic reactors /

Spatially Resolved Operando Measurements in Heterogeneous Catalytic Reactors, Volume 50, presents the latest on these essential components in the continuing search for better utilization of raw materials and energy that reduces impact on the environment. This latest release includes valuable chapter...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Dixon, Anthony G. (Autor), Deutschmann, Olaf (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cambridge, MA : Academic Press, an imprint of Elsevier, 2017.
Edición:First edition.
Colección:Advances in chemical engineering ; volume 50.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Front Cover
  • Spatially Resolved Operando Measurements in Heterogeneous Catalytic Reactors
  • Copyright
  • Contents
  • Contributors
  • Preface
  • Chapter One: Understanding the Performance of Automotive Catalysts via Spatial Resolution of Reactions Inside Honeycomb M ...
  • 1. Introduction
  • 2. SpaciMS Methods
  • 3. LNT Applications
  • 3.1. NOx Storage and Regeneration
  • 3.2. Regeneration With CO
  • 3.3. Direct H2 vs Indirect Intermediate-NH3 Regeneration Pathways
  • 3.4. Sulfation and Desulfation
  • 3.5. LNT Modeling Using Spatiotemporal Data
  • 3.6. Non-SpaciMS Methods for Resolving Distributed Intracatalyst Performance4. SCR Applications
  • 4.1. NOx and NH3 Reaction Distributions
  • 4.2. Distributed NH3 Capacity Utilization
  • 4.3. Operando NH3 Isotherms
  • 4.4. SCR Modeling Using Spatiotemporal Data
  • 4.5. Other Intracatalyst Distributed Measurements and Applications
  • 5. Oxidation Catalyst Applications
  • 6. Particulate Filter Applications
  • 7. Summary and Conclusions
  • Acknowledgments
  • References
  • Chapter Two: Spatio-Temporal Phenomena in Monolithic Reactors Measured by Combined Spatially-Resolved Mass Spectrometry a ... 1. Introduction
  • 2. Spatially Resolved Temperature Measurements
  • 2.1. Review of Spatiotemporal Temperature Measurements
  • 2.2. Optical Backscatter Reflectometer
  • 2.2.1. Measurement of Spatiotemporal Temperature by c-OFDR
  • 2.2.2. Theory
  • 2.2.2.1. Optical Fiber Structure and Light Transmission Features
  • 2.2.2.2. Reflected Spectral Scatter in the Optical Fiber
  • 2.2.3. Coherent c-OFDR
  • 2.2.4. Calibration and Testing Procedure for c-OFDR 4600 System2.2.4.1. Calibration of the c-OFDR 4600 System
  • 2.2.4.2. Spatial Temperature Measurement Testing
  • 2.2.4.3. Practical Considerations of c-OFDR Operation
  • 2.3. Applications of c-OFDR
  • 2.3.1. Steady-State Spatial Temperature Profile of a Catalytic Exothermic Reaction
  • 2.3.2. Spatiotemporal Temperature Measurements of Wrong-Way Behavior
  • 3. Spatiotemporal Temperature and Concentration Measurement by c-OFDR and SpaciMS
  • 3.1. Spatial Concentration Measurement by SpaciMS
  • 3.2. Combined Spatiotemporal Measurements by SpaciMS and c-OFDR3.2.1. Combined Steady-State Concentration and Temperature Measurements
  • 3.3. Applications
  • 3.3.1. Invasiveness of SpaciMS Measurements
  • 3.3.2. Spatiotemporal Features of Lean/Rich Cycling
  • 3.3.3. Spatiotemporal Features of the Catalytic Hydrocarbon Trap
  • 3.3.3.1. Temperature Programmed Oxidation (TPO)
  • 3.3.3.2. Spatially Resolved Hydrocarbon Trapping
  • 3.3.3.3. Spatially Resolved TPO
  • 3.3.3.4. Spatial Features of Oscillating Trapping and Oxidation