Cargando…

Polyaniline blends, composites, and nanocomposites /

"Polyaniline Blends, Composites, and Nanocomposites summarizes recent advances in polyaniline-based blends, composites and nanocomposites. Polyaniline (PANI) is a conducting polymer with a range of potential applications, particularly in electronics and packaging. The book covers the preparatio...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: P. M., Visakh (Editor ), Della Pina, Cristina (Editor ), Falletta, Ermelinda (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Amsterdam, Netherlands : Elsevier, [2018]
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Machine generated contents note: ch. 1 Polyaniline-Based Blends, Composites, and Nanocomposites: State of the Art, New Challenges, and Opportunities / P.M. Visakh
  • 1.1. Polyaniline: Structure and Properties Relationship
  • 1.2. Modification of Polyaniline
  • 1.3. Polyaniline Nano-/Micromaterial
  • Based Blends and Composites
  • 1.4. Polyaniline-Based Thermoplastic Blends
  • 1.5. Polyaniline-Based Blends: Natural Rubber and Synthetic Rubber
  • 1.6. Polyaniline-Based Composites and Nanocomposites
  • 1.7. Characterization of Polyaniline-Based Blends, Composites, and Nanocomposites
  • 1.8. Polyaniline
  • Natural Polymer Composites and Nanocomposites
  • 1.9. Applications of Polyaniline-Based Blends, Composites, and Nanocomposites
  • 1.10. Other Applications of Polyaniline-Based Blends, Composites, and Nanocomposites
  • 1.11. Polyaniline
  • Nanomaterial Composites: Structural, Optical, and Electrical Properties
  • References
  • ch. 2 Polyaniline: Structure and Properties Relationship / Subhendu Bhandari
  • 2.1. Introduction
  • 2.2. Structure
  • 2.3. Polymerization and Manufacture
  • 2.3.1. Oxidative Chemical Synthesis
  • 2.3.2. Interfacial Polymerization
  • 2.3.3. Microemulsion Polymerization
  • 2.3.4. Solid-State Synthesis
  • 2.3.5. Electrochemical Polymerization
  • 2.3.6. Electrospinning
  • 2.3.7. Enzymatic Synthesis
  • 2.4. Additives
  • 2.5. Processing and Suppliers
  • 2.6. Applications
  • 2.7. Morphology
  • 2.8. Crystal Structure and Crystallization Behavior
  • 2.9. Physical Properties
  • 2.10. Mechanical Properties
  • 2.11. Thermal Properties and Flammability
  • 2.12. Chemical Properties
  • 2.13. Electrical and Optical Properties
  • 2.14. Weathering and Radiation Resistance
  • 2.15. Future and Environmental Impact
  • 2.16. Conclusions
  • References
  • ch. 3 Modification of Polyaniline / Tahir Jamil
  • 3.1. Introduction
  • 3.2. Gamma and Electron Beam Irradiations
  • 3.2.1. Principle of the Techniques
  • 3.2.2. Effects of Irradiation on Polyaniline
  • 3.2.3. Stabilization of Irradiated Polyaniline
  • 3.2.4. Solubility of Irradiated Polyaniline
  • 3.3. Ion Implantation Technique
  • 3.3.1. Principle of the Technique
  • 3.3.2. Ion Implantation Methods
  • 3.3.3. Ion Implantation Species
  • 3.3.4. Effects and Uses of the Ion Implantation on Polyaniline
  • 3.4. Conclusions
  • References
  • ch. 4 Polyaniline Nano-/Micromaterials
  • Based Blends and Composites / Mohammad H. Ezzati
  • 4.1. Introduction
  • 4.2. Polyaniline Nano-/Micromaterials
  • Based Blends
  • 4.2.1. Solution Blending Method
  • 4.2.2. Melt Blending Method
  • 4.3. Polyaniline Nano-/Micromaterials
  • Based Composite
  • 4.3.1. Dispersion Polymerization Method
  • 4.3.2. Sonochemical Route
  • 4.3.3. Electrochemical Methods
  • 4.3.4. In Situ Polymerization Technique
  • 4.3.5. Emulsion Polymerization Pathway
  • 4.4. Conclusions
  • References
  • ch. 5 Polyaniline-Based Thermoplastic Blends / Cynthia Oueiny
  • 5.1. Introduction
  • 5.2. Preparation
  • 5.2.1. In Situ Polymerization of Aniline in a TP Matrix
  • 5.2.2. Ex Situ Blends
  • 5.2.3. Electrospinning
  • 5.2.4. Electrochemical Synthesis
  • 5.3. Properties
  • 5.3.1. Morphology
  • 5.3.2. Transport Properties
  • 5.3.3. Thermomechanical Properties
  • 5.3.4. Rheological Properties
  • 5.4. Applications
  • 5.4.1. Gas Sensors
  • 5.4.2. Welding of Plastics
  • 5.4.3. Corrosion Protection
  • 5.4.4. Electronic Devices
  • 5.4.5. Membranes
  • 5.4.6. Radar Absorbing Materials
  • 5.5. Conclusions
  • Abbreviations
  • References
  • ch. 6 Polyaniline-Based Blends: Natural Rubber and Synthetic Rubber / Masoud Mozafari
  • 6.1. Introduction
  • 6.2. Polyaniline-Based Natural Rubber Blends
  • 6.2.1. Polyaniline/Natural Rubber Composite Fibers
  • 6.2.2. Natural Rubber/Polyaniline-DBSA Composite
  • 6.2.3. PANI Blend With ENR-50
  • 6.2.4. Polyaniline-Coated Short Nylon Fiber/Natural Rubber
  • 6.3. Polyaniline-Based Synthetic Rubber Blends
  • 6.3.1. Polyaniline Blend With Nitrile Rubber
  • 6.3.2. Polyaniline-Coated Nylon Fiber and Chloroprene Rubber
  • 6.3.3. Polyaniline/Organoclay Nanocomposite and EPDM Rubber
  • 6.3.4. Polyaniline/Ethylene Propylene Diene Rubber Blends
  • 6.3.5. SBS Block Copolymer-Polyaniline Blends
  • 6.4. Conclusion
  • References
  • ch. 7 Polyaniline-Based Composites and Nanocomposites / Yongtao Tan
  • 7.1. Polyaniline
  • TiO2 Nanocomposites
  • 7.1.1. Nanotubes
  • 7.1.2. Nanoparticles
  • 7.1.3. Nanowires
  • 7.1.4. Nanorods
  • 7.1.5. Nanosheets
  • 7.2. Polyaniline
  • Calcium Carbonate Composites
  • 7.3. Natural Fiber
  • Based Polyaniline Composites
  • 7.4. Filler-Based Polyaniline Composites
  • 7.5. Polyaniline
  • Silica Nanocomposites
  • 7.6. Polyaniline
  • Clay Nanocomposites
  • 7.7. Polyaniline
  • Manganese Dioxide Nanocomposites
  • 7.8. Polyaniline-Porous Carbon Composites
  • 7.9. Polyaniline
  • Copper Nanocomposites
  • 7.10. Polyaniline
  • Montmorillonite Nanocomposites
  • 7.11. Polyaniline
  • Graphene Nanocomposites
  • 7.12. Cellulose Whiskers
  • Polyaniline Nanocomposites
  • 7.13. Conclusions
  • References
  • ch. 8 Characterization of Polyaniline-Based Blends, Composites, and Nanocomposites / Marco A. De Paoli
  • 8.1. Introduction
  • 8.2. Mechanical Properties
  • 8.3. Dynamic Mechanical Analysis
  • 8.4. Thermogravimetric Analysis
  • 8.5. Differential Scanning Calorimetry
  • 8.6. Scanning Electron Microscopy
  • 8.7. Atomic Force Microscopy
  • 8.8. Transmission Electron Microscopy
  • 8.9. X-ray Diffraction
  • 8.10. Small Angle X-ray Scattering Analysis
  • 8.11. Conclusions
  • Acknowledgments
  • References
  • ch. 9 Polyaniline/Natural Polymer Composites and Nanocomposites / Kannusamy Pandiselvi
  • 9.1. Introduction
  • 9.2. Polyaniline/Cellulose-Based Composites and Nanocomposites
  • 9.2.1. Cellulose
  • 9.2.2. Polyaniline/Cellulose Composites
  • 9.2.3. Polyaniline/Bacterial Cellulose Nanocomposite
  • 9.2.4. Polyaniline/Modified Cellulose Composites
  • 9.3. Polyaniline/Chitin-Based Composites and Nanocomposites
  • 9.3.1. Chitin
  • 9.3.2. Chitin-Polyaniline Composites
  • 9.3.3. Chitosan
  • 9.3.4. Chitosan/Polyaniline Composites
  • 9.3.5. Applications of Chitosan
  • Polyaniline Composites
  • 9.3.6. Chitosan-Metal Oxide/Polyaniline Composites
  • 9.4. Polyaniline/Starch-Based Composites and Nanocomposites
  • 9.4.1. Advantages of Starch/Polyaniline Composite
  • 9.5. Polyaniline/Seaweed-Based Composites and Nanocomposites
  • 9.6. Polyaniline/Other Natural Polymer
  • Based Composites and Nanocomposites
  • 9.7. Conclusions
  • References
  • ch. 10 Applications of Polyaniline-Based Blends, Composites, and Nanocomposites / S.A. Waghuley
  • 10.1. Introduction
  • 10.2. Methods of Synthesis of Polyaniline
  • 10.3. Synthesis of Polyaniline-Based Materials
  • 10.4. Applications of Polyaniline-Based Composites
  • 10.4.1. Electronic Applications
  • 10.4.2. Polyaniline-Based Composite for Conducting Applications
  • 10.4.3. Polyaniline-Based Composites for Packing Application
  • 10.5. Conclusions
  • References
  • Further Reading
  • ch. 11 Other Applications of Polyaniline-Based Blends, Composites, and Nanocomposites / Shiv K. Sharma
  • 11.1. Introduction
  • 11.2. Application in Energy Storage
  • 11.3. Application in Corrosion
  • 11.4. Application in Electromagnetic Interference Shielding
  • 11.5. Application in Polyaniline Composites
  • 11.6. Major Challenges and Future Scope of Work
  • 11.7. Conclusion
  • References
  • ch.
  • 12 Polyaniline
  • Nanomaterial Composites: Structural, Optical, and Electrical Properties / Ajit Kumar Meikap
  • 12.1. Introduction
  • 12.2. Synthesis of Nanomaterials
  • 12.2.1. Top-Down Approach
  • 12.2.2. Bottom-Up Approach
  • 12.2.3. In Situ Polymerization
  • 12.2.4. Synthesis of PANI/MWCNT-CdS and PANI/MWCNT-ZnS Nanocomposites
  • 12.3. Characterizations
  • 12.3.1. Structural
  • 12.3.2. Optical
  • 12.3.3. Electrical
  • 12.4. Conclusions
  • 12.5. Applications
  • References.