Writing small omegas : �Elie Cartan's contributions to the theory of continuous groups, 1894-1926 /
Writing Small Omegas: Elie Cartan's Contributions to the Theory of Continuous Groups 1894-1926 provides a general account of Lie's theory of finite continuous groups, critically examining Cartan's doctoral attempts to rigorously classify simple Lie algebras, including the use of many...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
London :
Academic Press, an imprint of Elsevier,
[2018]
|
Colección: | Studies in the history of mathematical enquiry.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Machine generated contents note: 1. Lie on the Backstage
- 1.1. Fundamentals of Lie Theory of Finite Continuous Groups
- 1.1.1. Three Fundamental Theorems
- 1.1.2. The Adjoint Croup
- 1.2. "A Fundamental Discipline"
- 2. Cartan's Doctoral Dissertation
- 2.1. Finite Continuous Croups
- 2.1.1. Reduced Form of a Given Group
- 2.1.2. Solvability and Semisimplicity Criteria
- 2.1.3. Radical and Decomposition Theorems
- 2.2. Lie Theory of Complete Systems
- 2.3. Complete Systems and Canonical Reduction
- 2.4. Appendix
- 3. Infinite Continuous Groups 1883
- 1902
- 3.1. Lie's First Contributions
- 3.2. Differential Invariants
- 3.3. Engel's Habilitationsschrift
- 3.4. Foundations of Infinite Continuous Groups
- 3.5. On a Theorem by Engel
- 3.6. Medolaghi's Contributions
- 3.7. Vessiot and His Memoire couronnee
- 4. Exterior Differential Systems
- 4.1. Some Technical Preliminaries
- 4.2. The State-of-the-Art in the Early 1890s
- 4.3. Engel's Invariants Theory of Pfaffian Systems
- 4.3.1. Invariant Correspondences
- 4.4. Von Weber's Contributions: 1898
- 1900
- 4.4.1. Character and Characteristic Transformations
- 4.4.2. Pfaffian Systems of Character One
- 4.4.3. Reducibility of a Pfaffian System to Its Normal Form
- 4.5. The Foundations of the Exterior Differential Calculus
- 4.6. Cartan's Theory of General Pfaffian Systems
- 4.6.1. Geometrical Representation
- 4.6.2. Cauchy's First Theorem
- 4.6.3. Genre and Characters
- 4.6.4. Characteristic Elements
- 4.6.5. Pfaffian Systems of Character One, II
- 4.7. Some Final Remarks
- 5. Cartan's Theory 1902
- 1909
- 5.1. On the Genesis of the Theory
- 5.2. Some Examples
- 5.3. Cartan's Theory
- 5.3.1. First Fundamental Theorem
- 5.3.2. Second and Third Fundamental Theorems
- 5.4. Subgroups of a Given Continuous Group
- 5.5. Simple Infinite Continuous Groups
- 5.6. Essential and Inessential Invariants
- 5.7. Some Final Remarks
- 6. Cartan as a Geometer
- 6.1. Introduction
- 6.2. Maurer
- (Cotton)
- Cartan Forms
- 6.3. Cartan's 1910 Paper
- 6.4. The Generalization of the Notion of Space
- 6.5. Cartan's Collaboration with Schouten
- 6.6. Concluding Remarks
- A. Picard
- Vessiot Theory
- B. The Galois of His Generation
- C. Clifford's Parallelism
- C.1. Klein's Zur Nicht-Euklidischen Geometrie
- C.2. Bianchi and Fubini
- C.3. Enea Bortolotti.