|
|
|
|
LEADER |
00000cam a2200000 i 4500 |
001 |
SCIDIR_on1006617043 |
003 |
OCoLC |
005 |
20231120010225.0 |
006 |
m o d |
007 |
cr |n||||||||| |
008 |
171018t20182018enka ob 001 0 eng d |
040 |
|
|
|a YDX
|b eng
|e rda
|e pn
|c YDX
|d N$T
|d EBLCP
|d IDEBK
|d N$T
|d OPELS
|d OCLCF
|d UPM
|d TXM
|d MERER
|d OCLCQ
|d D6H
|d CASUM
|d OCLCO
|d U3W
|d SNM
|d OCLCQ
|d CHVBK
|d INT
|d AU@
|d OCLCQ
|d OCLCO
|d WYU
|d OCLCO
|d OCLCA
|d LVT
|d OCLCA
|d OCLCQ
|d LQU
|d OCLCQ
|d S2H
|d OCLCO
|d VT2
|d OCLCQ
|d OCLCO
|d OCLCQ
|d OCLCO
|d K6U
|d OCL
|d OCLCQ
|d OCLCO
|
066 |
|
|
|c (S
|
019 |
|
|
|a 1006502594
|a 1007403561
|a 1031869824
|a 1031926956
|a 1040677479
|a 1066590289
|a 1105196256
|a 1105567725
|a 1229532317
|a 1235843151
|
020 |
|
|
|a 9780128035030
|q (electronic bk.)
|
020 |
|
|
|a 012803503X
|q (electronic bk.)
|
020 |
|
|
|z 9780128034804
|
020 |
|
|
|z 0128034807
|
035 |
|
|
|a (OCoLC)1006617043
|z (OCoLC)1006502594
|z (OCoLC)1007403561
|z (OCoLC)1031869824
|z (OCoLC)1031926956
|z (OCoLC)1040677479
|z (OCoLC)1066590289
|z (OCoLC)1105196256
|z (OCoLC)1105567725
|z (OCoLC)1229532317
|z (OCoLC)1235843151
|
050 |
|
4 |
|a QH595
|b .N8 2018eb
|
060 |
|
4 |
|a QU 350
|
060 |
|
4 |
|a 2018 C-484
|
072 |
|
7 |
|a SCI
|x 008000
|2 bisacsh
|
082 |
0 |
4 |
|a 574.8732
|2 23
|
245 |
0 |
0 |
|a Nuclear architecture and dynamics /
|c edited by Christophe Lavelle, Jean-Marc Victor.
|
264 |
|
1 |
|a London :
|b Academic Press,
|c [2018]
|
264 |
|
4 |
|c �2018
|
300 |
|
|
|a 1 online resource :
|b illustrations
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a Translational epigenetics series ;
|v v. 2
|
504 |
|
|
|a Includes bibliographical references and index.
|
505 |
0 |
|
|6 880-01
|a DNA mechanics -- The role of nucleosome positioning in genome function and evolution -- DNA supercoiling(omics) -- Dynamic chromatin folding in the cell -- Mesoscale modeling of chromatin fibers -- A polymer physics view on universal and sequence-specific aspects of chromosome folding -- Persistence of long-range contacts at insulators: turnover dynamics or engage cohesion? -- Long-range intranuclear interactions -- The multiple effects of molecular crowding in the cell nucleus: from molecular dynamics to the regulation of nuclear architecture -- Nuclear bodies -- Nucleolus: the consummate nuclear body -- Transcription factories as spatial and functional organization nodes -- Polycomb bodies -- The nuclear lamina and genome organization -- Actin in the cell nucleus -- Nuclear pores and the genome -- Protein transport between the nucleus and cytoplasm -- Replicating chromatin in the eukaryotic genome -- Promoter-enhancer looping and regulatory neighborhoods: gene regulation in the framework of topologically associating domains -- Sailing the Hi-C's: benefits and remaining challenges in mapping chromatin interactions -- Chromatin folding and recombination -- Altered nucleus and disease -- Yeast nucleus: a model for chromatin folding principles -- Chromosomes and chromatin in the nematode nucleus -- Nuclear dynamics at specific cell cycle stages in the slime mold Physarum polycephalum.
|
520 |
|
|
|a Nuclear Architecture and Dynamics provides a definitive resource for (bio)physicists and molecular and cellular biologists whose research involves an understanding of the organization of the genome and the mechanisms of its proper reading, maintenance, and replication by the cell. This book brings together the biochemical and physical characteristics of genome organization, providing a relevant framework in which to interpret the control of gene expression and cell differentiation. It includes work from a group of international experts, including biologists, physicists, mathematicians, and bioinformaticians who have come together for a comprehensive presentation of the current developments in the nuclear dynamics and architecture field. The book provides the uninitiated with an entry point to a highly dynamic, but complex issue, and the expert with an opportunity to have a fresh look at the viewpoints advocated by researchers from different disciplines.
|
650 |
|
0 |
|a Cell nuclei.
|
650 |
|
0 |
|a Genomes.
|
650 |
1 |
2 |
|a Cell Nucleus
|0 (DNLM)D002467
|
650 |
2 |
2 |
|a Genome
|0 (DNLM)D016678
|
650 |
|
6 |
|a Noyau (Cellule)
|0 (CaQQLa)201-0060348
|
650 |
|
6 |
|a G�enomes.
|0 (CaQQLa)201-0071616
|
650 |
|
7 |
|a SCIENCE
|x Life Sciences
|x Biology.
|2 bisacsh
|
650 |
|
7 |
|a Genomes
|2 fast
|0 (OCoLC)fst00940225
|
650 |
|
7 |
|a Cell nuclei
|2 fast
|0 (OCoLC)fst00850208
|
655 |
|
4 |
|a Internet Resources.
|
700 |
1 |
|
|a Lavelle, Christophe,
|e ditor.
|
700 |
1 |
|
|a Victor, Jean-Marc,
|e editor.
|
776 |
0 |
8 |
|i Print version:
|z 9780128034804
|z 0128034807
|w (OCoLC)974699193
|
830 |
|
0 |
|a Translational epigenetics series ;
|v v. 2.
|
856 |
4 |
0 |
|u https://sciencedirect.uam.elogim.com/science/book/9780128034804
|z Texto completo
|
880 |
0 |
0 |
|6 505-01/(S
|g Machine generated contents note:
|g Section I
|t Chromatin Organization and Dynamics --
|g ch. 1
|t DNA Mechanics /
|r John F. Marko --
|g 1.1.
|t Basic Properties of DNA --
|g 1.2.
|t Double Helix Is a Semiflexible Polymer --
|g 1.3.
|t Double-Helix Topology and Twisting Stiffness --
|g 1.4.
|t Beyond the Decoupled Harmonic Model of Double-Helix Elasticity --
|g 1.5.
|t Severe Deformations of the Double Helix --
|g 1.6.
|t Overview of DNA---Protein Interactions --
|t References --
|g ch. 2
|t Role of Nucleosome Positioning in Genome Function and Evolution /
|r Benjamin Audit --
|g 2.1.
|t Introduction --
|g 2.2.
|t Sequence-Dependent Physical Model of Nucleosome Occupancy --
|g 2.3.
|t Comparing In Vivo and In Vitro Primary Structures of Chromatin --
|g 2.4.
|t Functional Location of NIEBs in Saccharomyces cerevisiae --
|g 2.5.
|t NIEBs and Intrinsic Flanking Nucleosomes Are Widely Distributed Along Human Chromosomes --
|g 2.6.
|t Conclusion --
|t Acknowledgments --
|t References --
|g ch. 3
|t DNA Supercoiling(omics) /
|r Fedor Kouzine --
|g 3.1.
|t Introduction --
|g 3.2.
|t Current Hot Spots --
|g 3.3.
|t Perspective --
|t References --
|g ch. 4
|t Dynamic Chromatin Folding in the Cell /
|r Kazuhiro Maeshima --
|g 4.1.
|t Genomic DNA --
|g 4.2.
|t Nucleosome --
|g 4.3.
|t Chromatin Structure In Vitro --
|g 4.4.
|t Chromatin Structure In Vivo --
|g 4.5.
|t Liquid-Like Behavior of Chromatin --
|g 4.6.
|t Higher Order Chromatin Structure --
|g 4.7.
|t Mitotic Chromosome Formation --
|t Acknowledgments --
|t References --
|g ch. 5
|t Mesoscale Modeling of Chromatin Fibers /
|r Tamar Schlick --
|g 5.1.
|t Introduction: The Chromatin Fiber Structure and Function --
|g 5.2.
|t Mesoscale Chromatin Modeling --
|g 5.3.
|t Applications --
|g 5.4.
|t Future Prospects --
|t Acknowledgments --
|t References --
|g ch. 6
|t Polymer Physics View on Universal and Sequence-Specific Aspects of Chromosome Folding /
|r Ralf Everaers --
|g 6.1.
|t Introduction --
|g 6.2.
|t Experimental Insight on Nuclear Genome Organization: From DNA to TADs and Chromosome Territories --
|g 6.3.
|t Universal Aspects of Chromosome Folding: Polymer Theory --
|g 6.4.
|t Sequence-Specific Aspects of Chromosome Folding: Polymer Theory --
|g 6.5.
|t Discussion and Conclusions --
|t Acknowledgments --
|t References --
|g ch. 7
|t Persistence of Long-Range Contacts at Insulators: Turnover Dynamics or Engaged Cohesin/
|r Olivier Cuvier --
|g 7.1.
|t Enhancers, Promoters, and Insulators --
|g 7.2.
|t Insulator-Binding Proteins and Cofactors --
|g 7.3.
|t Barrier Insulators and Epigenetically Marked Chromatin Domains --
|g 7.4.
|t Persistence of Long-Range Contacts at Insulators: Equilibrium Dynamics or Deterministic Reactions--
|t References --
|g ch. 8
|t Long-Range Intranuclear Interactions /
|r Ann Dean --
|g 8.1.
|t Introduction --
|g 8.2.
|t Genome-Wide Long-Range Interactions --
|g 8.3.
|t Mechanisms of Establishing and Maintaining Local Long-Range Interactions --
|g 8.4.
|t Role of Alteration of 3D Organization in Disease --
|g 8.5.
|t Future Directions --
|t Acknowledgments --
|t References --
|g ch. 9
|t Multiple Effects of Molecular Crowding in the Cell Nucleus: From Molecular Dynamics to the Regulation of Nuclear Architecture /
|r Sebastien Huet --
|g 9.1.
|t Introduction --
|g 9.2.
|t Macromolecular Crowding in the Nucleus: The Predictions of the Theoretical and In Vitro Data --
|g 9.3.
|t Current Experimental Evidences of the Impact of Crowding on Molecular Dynamics in the Cell Nucleus --
|g 9.4.
|t Physiological Role for Macromolecular Crowding Inside the Nucleus--
|g 9.5.
|t Conclusions and Future Challenges --
|t References --
|g Section II
|t Nuclear Envelope, Nuclear Bodies, and Nucleocytoplasmic Trafficking --
|g ch. 10
|t Nuclear Bodies /
|r Miroslav Dundr --
|g 10.1.
|t Introduction --
|g 10.2.
|t Nuclear Body Assembly --
|g 10.3.
|t Why Build a Nuclear Body--
|g 10.4.
|t List of Nuclear Bodies --
|g 10.5.
|t Recent Developments---Biophysical Examination of NB Function and Assembly --
|g 10.6.
|t Clinical Relevance --
|g 10.7.
|t Concluding Remarks --
|t Acknowledgments --
|t References --
|g ch. 11
|t Nucleolus: The Consummate Nuclear Body /
|r Laura Trinkle-Mulcahy --
|g 11.1.
|t Brief History --
|g 11.2.
|t Ribosome Biogenesis --
|g 11.3.
|t Ribosomal Genes and NORs --
|g 11.4.
|t Nucleolar Plasticity --
|g 11.5.
|t Building a Nucleolus --
|g 11.6.
|t Physical Properties of Nucleoli --
|g 11.7.
|t Conclusion --
|t Acknowledgments --
|t References --
|g ch. 12
|t Transcription Factories as Spatial and Functional Organization Nodes /
|r Argyris Papantonis --
|g 12.1.
|t Genome Organization in Respect to Transcriptional Activity --
|g 12.2.
|t Operational Definition for Transcription Factories --
|g 12.3.
|t Resolving Earlier Controversy About Transcription Factories --
|g 12.4.
|t Physical Properties of Transcription Factories --
|g 12.5.
|t Functional Properties of Transcription Factories --
|g 12.6.
|t Loop Extrusion Model and Factories --
|g 12.7.
|t Conclusion and Outlook --
|t References --
|t Further Reading --
|g ch. 13
|t Polycomb Bodies /
|r Sarah Elderkin --
|g 13.1.
|t Diversity of Polycomb Repressive Complexes --
|g 13.2.
|t Polycomb Repressive Complex Recruitment --
|g 13.3.
|t Polycomb Bodies: A Historical View --
|g 13.4.
|t Polycomb Body Composition and Distribution --
|g 13.5.
|t Polycomb Body Dynamics --
|g 13.6.
|t Polycomb Body Formation --
|g 13.7.
|t Polycomb Bodies, Nuclear Architecture, and Gene Regulation --
|g 13.8.
|t Specialized Functions of Polycomb Bodies --
|g 13.9.
|t Concluding Remarks --
|t References --
|g ch. 14
|t Nuclear Lamina and Genome Organization /
|r Karen L. Reddy --
|g 14.1.
|t Nuclear Lamina and Nuclear Envelope --
|g 14.2.
|t Lamins --
|g 14.3.
|t Lamins Directly Interact With INM Proteins --
|g 14.4.
|t Lamina Links the Cytoskeleton With the Nucleus --
|g 14.5.
|t Nuclear Lamina is Dynamic Through Mitosis --
|g 14.6.
|t Nuclear Lamina is a Developmentally Dynamic Structure --
|g 14.7.
|t Lamina-Associated Domains --
|g 14.8.
|t Lamins and INM Proteins in LAD Organization --
|g 14.9.
|t INM/Lamina as a Transcriptionally Repressive Compartment --
|g 14.10.
|t Chromatin and LAD Organization --
|g 14.11.
|t LADs and Genome Organization --
|g 14.12.
|t Involvement of Nuclear Periphery in Human Diseases and Aging --
|g 14.13.
|t Perspectives --
|t References --
|g ch. 15
|t Actin in the Cell Nucleus /
|r Piergiorgio Percipalle --
|g 15.1.
|t Actin and Myosin Regulate Transcription by Eukaryotic RNA Polymerases --
|g 15.2.
|t Cotranscriptional Association of Actin With Ribonucleoprotein Complexes --
|g 15.3.
|t Actin From Gene to Polyribosomes: What Next--
|g 15.4.
|t Actin-Containing Chromatin Remodeling Complexes --
|g 15.5.
|t Potential Roles of Actin in Chromatin-Remodeling Complexes --
|g 15.6.
|t Actin and Myosin in the Long-Range Movement of Chromosome Sites --
|g 15.7.
|t Actin as Part of Nucleoskeleton --
|g 15.8.
|t Actin, ARPs, and ABPs in DNA Damage Repair --
|g 15.9.
|t Concluding Remarks --
|t References --
|g ch. 16
|t Nuclear Pores and the Genome /
|r Maya Capelson --
|g 16.1.
|t Introduction --
|g 16.2.
|t NPC Structure and Assembly --
|g 16.3.
|t Chromatin-Binding Roles of the NPC in Transcriptional Regulation --
|g 16.4.
|t NPCs and Maintenance of Genome Integrity --
|g 16.5.
|t Perspectives --
|t References --
|g ch. 17
|t Protein Transport Between the Nucleus and Cytoplasm /
|r Masahiro Oka --
|g 17.1.
|t Introduction --
|g 17.2.
|t Nuclear Pore Complex --
|g 17.3.
|t Signals for Nuclear Import and Export --
|g 17.4.
|t Ran Gradient --
|g 17.5.
|t Molecular Mechanisms of Nuclear Protein Import and Export --
|g 17.6.
|t Importin β Family, Transporters of Nuclear-Cytoplasmic Transport --
|g 17.7.
|t Importin α, a cNLS Receptor Molecule --
|g 17.8.
|t Physiological Processes and Nuclear Transport Factors --
|g 17.9.
|t Conclusions --
|t Acknowledgments --
|t References --
|g Section III
|t Main Nuclear Functions --
|g ch. 18
|t Replicating Chromatin in the Eukaryotic Genome /
|r David M. Gilbert --
|g 18.1.
|t Introduction --
|g 18.2.
|t Toolkit: Studying Replication of Chromatin --
|g 18.3.
|t Replication Initiation Depends on Chromatin Context --
|g 18.4.
|t Chromatin Folding and Replication Timing Regulation --
|g 18.5.
|t Replication Elongation: Making and Breaking Chromatin --
|g 18.6.
|t Chromatin Maturation --
|g 18.7.
|t Replication Termination --
|g 18.8.
|t Concluding Remarks --
|t Acknowledgments --
|t References --
|t Further Reading --
|g ch.
|