Maximum principles for the Hill's equation /
Maximum Principles for the Hill's Equation focuses on the application of these methods to nonlinear equations with singularities (e.g. Brillouin-bem focusing equation, Ermakov-Pinney, .) and for problems with parametric dependence. The authors discuss the properties of the related Green's...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Otros Autores: | , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
London :
Academic Press,
�2018.
|
Edición: | 1st ed. |
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Front Cover
- Maximum Principles for the Hill's Equation
- Copyright
- Contents
- About the Authors
- Preface
- Acknowledgment
- 1 Introduction
- 1.1 Hill's Equation
- 1.2 Stability in the Sense of Lyapunov
- 1.3 Floquet's Theorem for the Hill's Equation
- References
- 2 Homogeneous Equation
- 2.1 Introduction
- 2.2 Sturm Comparison Theory
- 2.3 Spectral Properties of Dirichlet Problem
- 2.4 Spectral Properties of Mixed and Neumann Problems
- 2.5 Spectral Properties of the Periodic Problem: Intervals of Stability and Instability
- 2.6 Relation Between Eigenvalues of Neumann, Dirichlet, Periodic, and Antiperiodic Problems References
- 3 Nonhomogeneous Equation
- 3.1 Introduction
- 3.2 The Green's Function
- 3.3 Periodic Conditions
- 3.3.1 Properties of the Periodic Green's Function
- 3.3.2 Optimal Conditions for the Periodic MP and AMP
- 3.3.3 Explicit Criteria for the Periodic AMP and MP
- 3.3.4 More on Explicit Criteria
- 3.3.5 Examples
- 3.4 Non-Periodic Conditions
- 3.4.1 Neumann Problem
- 3.4.2 Dirichlet Problem
- 3.4.3 Relation Between Neumann and Dirichlet Problems
- 3.4.4 Mixed Problems and their Relation with Neumann and Dirichlet Ones3.4.5 Order of Eigenvalues and Constant Sign of the Green's Function
- 3.4.6 Relations Between Green's Functions. Comparison Principles
- 3.4.7 Constant Sign for Non-Periodic Green's Functions
- 3.4.8 Global Order of Eigenvalues
- 3.4.9 Examples
- 3.5 General Second Order Equation
- 3.5.1 Periodic Problem
- 3.5.2 Non-Periodic Conditions
- References
- 4 Nonlinear Equations
- 4.1 Introduction
- 4.2 Fixed Point Theorems and Degree Theory
- 4.2.1 Leray-Schauder Degree
- 4.2.2 Fixed Point Theorems4.2.2.1 Application to Nonlinear Boundary Value Problems
- 4.2.3 Extremal Fixed Points
- 4.2.4 Monotone Operators
- 4.2.4.1 Existence of Solutions of Periodic Boundary Value Problems
- 4.2.5 Non-increasing Operators
- 4.2.6 Non-decreasing Operators
- 4.2.6.1 Multiplicity of Solutions
- 4.2.7 Problems with Parametric Dependence
- 4.2.7.1 Introduction and Preliminaries
- 4.2.7.2 Positive Green's Function
- Auxiliary Results
- The case �I³*>0
- The case c(t)=0
- 4.2.7.3 Non-negative Green's Function
- Applications to Singular Equations4.3 Lower and Upper Solutions Method
- 4.3.1 Well Ordered Lower and Upper Solutions
- Construction of the modi ed problem
- 4.3.2 Existence of Extremal Solutions
- 4.3.2.1 Periodic Boundary Value Problem
- 4.3.3 Non-Well-Ordered Lower and Upper Solutions
- 4.4 Monotone Iterative Techniques
- 4.4.1 Well Ordered Lower and Upper Solutions
- 4.4.2 Reversed Ordered Lower and Upper Solutions
- 4.4.2.1 Final Remarks
- References
- A Sobolev Inequalities
- References
- Glossary
- Index