Cargando…

Basic finite element method as applied to injury biomechanics /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Yang, King Hay, 1954- (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Amsterdam : Academic Press, 2017.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Front Cover; Basic Finite Element Method as Applied to Injury Biomechanics; Basic Finite Element Method as Applied toInjury Biomechanics; Copyright; Contents; List of Contributors; Foreword; Preface; 1
  • Basic Finite ElementMethod and Analysisas Applied to Injury Biomechanics; 1
  • Introduction; 1.1 FINITE ELEMENT METHOD AND ANALYSIS; 1.2 CALCULATION OF STRAIN AND STRESS FROM THE FE MODEL; 1.2.1 AVERAGE STRAIN AND POINT STRAIN; 1.2.2 NORMAL AND SHEAR STRAIN; 1.2.3 CALCULATION OF STRESS; 1.3 SAMPLE MATRIX STRUCTURAL ANALYSIS; 1.3.1 ELEMENT STIFFNESS MATRIX OF A LINEAR SPRING.
  • 1.3.2 ELEMENT STIFFNESS MATRIX OF A LINEAR SPRING NOT IN LINE WITH THE X-AXIS1.3.3 ELEMENT STIFFNESS MATRIX OF A HOMOGENEOUS LINEAR ELASTIC BAR; 1.3.4 GLOBAL STIFFNESS MATRIX OF MULTIPLE INLINE LINEAR SPRINGS OR BARS; 1.3.5 GLOBAL STIFFNESS MATRIX OF A SIMPLE BIOMECHANICS PROBLEM; 1.3.6 GLOBAL STIFFNESS MATRIX OF A SIMPLE TRUSS BRIDGE; 1.3.7 GAUSSIAN OR GAUSS ELIMINATION; 1.4 FROM MSA TO A FINITE ELEMENT MODEL; REFERENCES; 2
  • Meshing, Element Types, and Element Shape Functions; 2.1 STRUCTURE IDEALIZATION AND DISCRETIZATION; 2.2 NODE; 2.3 ELEMENT; 2.3.1 SIMPLEST ELEMENT TYPES.
  • 2.3.2 1D ELEMENT TYPE2.3.3 2D ELEMENT TYPE; 2.3.4 3D ELEMENT TYPE; 2.4 FORMATION OF FINITE ELEMENT MESH; 2.5 ELEMENT SHAPE FUNCTIONS AND [B] MATRIX; 2.5.1 1D, 2-NODE ELEMENT SHAPE FUNCTIONS; 2.5.1.1 2-Node Linear Bar Element; 2.5.1.2 2-Node Beam Element; 2.5.2 2D, 3-NODE LINEAR TRIANGULAR ELEMENT; 2.5.2.1 3-Node Linear Triangular Element; 2.5.3 4-NODE RECTANGULAR BILINEAR PLANE ELEMENT WITH EDGES PARALLEL TO THE COORDINATE AXES; 2.5.3.1 Comparison of CST and Bilinear Quadrilateral Element; 2.5.4 2D, 4-NODE PLATE ELEMENT SHAPE FUNCTIONS WITH EDGES PARALLEL TO THE COORDINATE AXES.
  • 2.5.4.1 Use Pascal's Triangle to Select Polynomial Terms2.5.4.2 Select Polynomial Functions to Interpolate a Four-Node Plate Element; 2.5.4.3 Identify 12 Constants for the Interpolation Polynomial; 2.5.4.4 Find Shape Functions for a 4-Node Plate Element; 2.5.4.5 Determine Strain-Displacement Matrix; 2.5.5 3D, 4-NODE SHELL ELEMENT; 2.5.6 3D, 8-NODE TRILINEAR ELEMENT SHAPE FUNCTIONS; REFERENCES; 3
  • Isoparametric Formulation and Mesh Quality; 3.1 INTRODUCTION; 3.2 NATURAL COORDINATE SYSTEM; 3.3 ISOPARAMETRIC FORMULATION OF 1D ELEMENTS; 3.3.1 1D LINEAR BAR ELEMENT ISOPARAMETRIC SHAPE FUNCTIONS.
  • 3.3.1.1 1D Transfer Mapping Functions and Interpolations3.3.2 1D BEAM ELEMENT ISOPARAMETRIC SHAPE FUNCTIONS; 3.4 ISOPARAMETRIC FORMULATION OF 2D ELEMENT; 3.4.1 ISOPARAMETRIC FORMULATION OF 2D TRIANGULAR ELEMENT; 3.4.2 ISOPARAMETRIC FORMULATION OF 2D BILINEAR ELEMENT; 3.4.3 DETERMINE THE [B] MATRIX BASED ON ISOPARAMETRIC FORMULATION; 3.5 ISOPARAMETRIC FORMULATION OF 3D ELEMENT; 3.5.1 CONSTANT-STRAIN TETRAHEDRAL ELEMENT; 3.5.2 TRILINEAR HEXAHEDRAL ELEMENT; 3.6 TRANSFER MAPPING FUNCTION FOR 2D ELEMENT; 3.7 JACOBIAN MATRIX AND DETERMINANT OF JACOBIAN MATRIX.