Applied statistical modeling and data analytics : a practical guide for the petroleum geosciences /
Applied Statistical Modeling and Data Analytics: A Practical Guide for the Petroleum Geosciences�i�A�provides a practical guide to many of the classical and modern statistical techniques that have become established for oil and gas professionals in recent years. It s...
Clasificación: | Libro Electrónico |
---|---|
Autores principales: | , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Cambridge, MA :
Elsevier,
[2018]
|
Edición: | First edition. |
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Front Cover
- Applied Statistical Modeling and Data Analytics: A Practical Guide for the Petroleum Geosciences
- Copyright
- Dedication
- Contents
- Preface
- Acknowledgments
- Chapter 1: Basic Concepts
- 1.1. Background and Scope
- 1.1.1. What Is Statistics?
- 1.1.2. What Is Big Data Analytics?
- 1.1.3. Data Analysis Cycle
- 1.1.4. Some Applications in the Petroleum Geosciences
- 1.2. Data, Statistics, and Probability
- 1.2.1. Outcomes and Events
- 1.2.2. Probability
- 1.2.3. Conditional Probability and Bayes Rule
- 1.3. Random Variables
- 1.3.1. Discrete Case1.3.2. Continuous Case
- 1.3.3. Indicator Transform
- 1.4. Summary
- Exercises
- References
- Chapter 2: Exploratory Data Analysis
- 2.1. Univariate Data
- 2.1.1. Measures of Center
- 2.1.2. Measures of Spread
- 2.1.3. Measures of Asymmetry
- 2.1.4. Graphing Univariate Data
- 2.2. Bivariate Data
- 2.2.1. Covariance
- 2.2.2. Correlation and Rank Correlation
- 2.2.3. Graphing Bivariate Data
- 2.3. Multivariate Data
- 2.4. Summary
- Exercises
- References
- Chapter 3: Distributions and Models Thereof
- 3.1. Empirical Distributions3.1.1. Histogram
- 3.1.2. Quantile Plot
- 3.2. Parametric Models
- 3.2.1. Uniform Distribution
- 3.2.2. Triangular Distribution
- 3.2.3. Normal Distribution
- 3.2.4. Lognormal Distribution
- 3.2.5. Poisson Distribution
- 3.2.6. Exponential Distribution
- 3.2.7. Binomial Distribution
- 3.2.8. Weibull Distribution
- 3.2.9. Beta Distribution
- 3.3. Working With Normal and Log-Normal Distributions
- 3.3.1. Normal Distribution
- 3.3.2. Normal Score Transformation
- 3.3.3. Log-Normal Distribution
- 3.4. Fitting Distributions to Data3.4.1. Probability Plots
- 3.4.2. Parameter Estimation Techniques
- Linear Regression Analysis
- Method of Moments
- Nonlinear Least-Squares Analysis
- 3.5. Other Properties of Distributions and Their Evaluation
- 3.5.1. Central Limit Theorem and Confidence Limits
- 3.5.2. Bootstrap Sampling
- 3.5.3. Comparing Two Distributions
- Q-Q Plot
- Testing for Difference in Mean
- Testing for Difference in Distributions
- Other Methods for Comparing Distributions
- 3.6. Summary
- Exercises
- References
- Chapter 4: Regression Modeling and Analysis4.1. Introduction
- 4.2. Simple Linear Regression
- 4.2.1. Formulating and Solving the Linear Regression Problem
- 4.2.2. Evaluating the Linear Regression Model
- 4.2.3. Properties of the Regression Parameters and Confidence Limits
- 4.2.4. Estimating Confidence Intervals for the Mean Response and Forecast
- 4.2.5. An Illustrative Example of Linear Regression Modeling and Analysis
- 4.3. Multiple Regression
- 4.3.1. Formulating and Solving the Multiple Regression Model