Heat transport in micro and nanoscale thin films /
Heat Transport in Micro- and Nanoscale Thin Films presents aspects and applications of the principle methods of heat transport in relation to nanoscale films. Small-scale parts and thin films are widely used in the electronics industry. However, the drastic change in the thermal conductivity with re...
Clasificación: | Libro Electrónico |
---|---|
Autores principales: | , , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Amsterdam, Netherlands ; Oxford, England ; Cambridge, Massachusetts :
Elsevier,
2018.
|
Colección: | Micro & Nano Technologies Series
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Front Cover; Heat Transport in Micro- and Nanoscale Thin Films; Copyright Page; Contents; Preface; Acknowledgment; 1 Introduction; 1.1 General Considerations; 1.2 Scale of Energy Transport; 1.3 Some Aspects of Statistical Approach for Micro/Nanoscale Transport; References; 2 Crystal Dynamics and Lattice Waves; 2.1 Introduction; 2.2 Elementary Crystallography; 2.2.1 Structure of Crystal Lattices; 2.2.2 Reciprocal Lattices; 2.2.3 Crystal Planes and Directions; 2.3 Lattice Vibration; 2.3.1 Chain of Identical Atoms; 2.3.2 Phonons; 2.3.3 Chain of Two Types of Atoms; 2.4 Phonon Scattering
- 2.4.1 Phonon Scattering With Impurities and Defects 2.4.2 Phonon Scattering With the Crystal Boundaries; 2.4.3 Phonon-Phonon Scattering; 2.4.3.1 Normal Processes; 2.4.3.2 Umklapp Processes; 2.5 Thermal Properties; 2.5.1 The Density of States; 2.5.2 Heat Capacity; 2.5.3 Thermal Conductivity; 2.6 Closing Remarks; References; 3 Some Aspects of Statistical Thermodynamics; 3.1 Introduction; 3.2 Statistical Mechanics; 3.2.1 Microstates and Macrostates; 3.2.1.1 Macrostates; 3.2.1.2 Microstates; 3.2.2 Probability Theory; 3.2.2.1 Classical Probability; 3.2.2.2 Statistical Probability
- 3.2.3 Probability Distributions 3.2.3.1 Discrete Distributions; 3.2.3.2 Continuous Distributions; 3.2.4 Phase Space; 3.3 Ensembles; 3.3.1 The Microcanonical Ensemble; 3.3.1.1 Postulate 1: The Probability for All Microstates Are Equal; 3.3.1.2 Postulate 2: Boltzmann Entropy Formula; 3.3.1.3 Postulate 3: Largest Value of the Entropy Represents the Equilibrium State; 3.3.2 Canonical Ensembles; 3.3.3 Grand Canonical Ensemble; 3.4 Statistical Distributions; 3.4.1 Maxwell-Boltzmann Distribution; 3.4.2 Fermi-Dirac Distribution; 3.4.3 Bose-Einstein Distribution; 3.5 Closing Remarks; References
- 4 Analysis of Energy Transport Equations at Micro/Nanoscale 4.1 Introduction; 4.2 Hyperbolic Heat Equation and Applications; 4.2.1 Analysis and Solution of Hyperbolic Heat Equation; 4.2.2 Perturbation Solution for Hyperbolic Heat Equation; 4.2.3 Findings and Discussions; 4.2.3.1 Temperature and Stress Fields; 4.2.3.2 Perturbation Solution of Temperature Field; 4.3 Electron Kinetic Theory Approach for Energy Transfer in Metallic Films; 4.3.1 Formulation of Microscopic Energy Transport in Metallic Substrates; 4.3.2 Parabolic Heating Model; 4.3.3 Application of Laser Short-Pulse Heating
- 4.3.4 Findings of Numerical Simulations 4.4 Equation of Phonon Radiative Transfer; 4.4.1 Transport Properties of a Dielectric Material; 4.4.2 Heat Transfer Mechanism in a Thin Dielectric Film; 4.4.3 Boltzmann Transport Equation; 4.4.4 Equation of Phonon Radiative Transfer for Two-Dimensional Dielectric Thin Films; 4.4.4.1 Heat Fluxes; 4.4.4.2 Equilibrium Intensity Calculation; 4.4.4.3 Physical Significance of Each Term in EPRT; 4.4.4.4 Polarization and Modes of Phonons; 4.4.4.4.1 Longitudinal Acoustic; 4.4.4.4.2 Transverse Acoustic; 4.4.4.4.3 Longitudinal Optical; 4.4.4.4.4 Transverse Optical