|
|
|
|
LEADER |
00000cam a2200000M 4500 |
001 |
SCIDIR_on1005861588 |
003 |
OCoLC |
005 |
20231120010223.0 |
006 |
m o d |
007 |
cr |n||||||||| |
008 |
171011s2017 xx o 000 0 eng d |
040 |
|
|
|a YDX
|b eng
|e pn
|c YDX
|d N$T
|d IDEBK
|d EBLCP
|d N$T
|d OCLCF
|d OPELS
|d UAB
|d MERER
|d OCLCQ
|d UKMGB
|d OCLCQ
|d S2H
|d OCLCO
|d OCLCQ
|d COM
|d OCLCQ
|d SFB
|d OCLCQ
|d OCLCO
|
015 |
|
|
|a GBB7G5712
|2 bnb
|
016 |
7 |
|
|a 018509631
|2 Uk
|
019 |
|
|
|a 1005701321
|a 1005968540
|a 1117883761
|a 1311343482
|a 1311344485
|
020 |
|
|
|a 9780128110478
|q (electronic bk.)
|
020 |
|
|
|a 0128110473
|q (electronic bk.)
|
020 |
|
|
|z 9780128110461
|
020 |
|
|
|z 0128110465
|
035 |
|
|
|a (OCoLC)1005861588
|z (OCoLC)1005701321
|z (OCoLC)1005968540
|z (OCoLC)1117883761
|z (OCoLC)1311343482
|z (OCoLC)1311344485
|
050 |
|
4 |
|a TA418.9.C6
|
072 |
|
7 |
|a TEC
|x 009000
|2 bisacsh
|
072 |
|
7 |
|a TEC
|x 035000
|2 bisacsh
|
082 |
0 |
4 |
|a 620.1/18
|2 23
|
245 |
0 |
0 |
|a Computational Analysis of Structured Media
|
260 |
|
|
|b Academic Pr
|c 2017.
|
300 |
|
|
|a 1 online resource
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
0 |
|
|a Mathematical Analysis and its Applications
|
505 |
0 |
|
|a Front Cover -- Computational Analysis of Structured Media -- Copyright -- Dedication -- Contents -- Acknowledgment -- Preface -- Reference -- Chapter 1: Introduction -- Reference -- Chapter 2: Complex Potentials and R-linear problem -- 1. Complex potentials -- 2. R-linear problem -- 3. Metod of functional equations -- Reference -- Chapter 3: Constructive homogenization -- 1. Introduction -- 2. Deterministic and stochastic approaches -- 3. Series expansions for the local fields and effective tensors. Traditional approach
|
505 |
8 |
|
|a 4. Schwarz�a#x80;#x99;s method5. Remark on asymptotic methods -- Reference -- Chapter 4: From Basic Sums to effective conductivity and RVE) -- 1. Basic Sums -- 2. Identical circular inclusions. -- 3. Representative volume element -- 4. Method of Rayleigh -- Reference -- Chapter 5: Introduction to the method of self-similar approximants -- 1. Brief introduction to extrapolation -- 2. Algebraic renormalization and self-similar bootstrap -- 3. Extrapolation problem and self-similar approximants -- 4. Corrected Pad�A� approximants for indeterminate problem
|
505 |
8 |
|
|a 5. Calculation of critical exponents6. Interpolation with self-similar root approximants -- Reference -- Chapter 6: Conductivity of regular composite. Square lattice -- 1. Introduction -- 2. Critical point, square array -- 3. Critical Index s -- 4. Crossover formula for all concentrations -- 5. Expansion near the threshold -- 6. Additive ansatz. Critical amplitude and formula for all concentrations -- 7. Interpolation with high-concentration Pad�A� approximants -- 8. Comment on contrast parameter -- Reference
|
505 |
8 |
|
|a Chapter 7: Conductivity of regular composite. Hexagonal array 1. Effective conductivity and critical properties of a hexagonal array of superconducting cylinders -- 2. Series for hexagonal array of superconducting cylinders -- 3. Critical Point -- 4. Critical index and amplitude -- 5. Critical amplitude and formula for all concentrations -- 6. Interpolation with high-concentration Pad�A� approximants -- 7. Discussion of the ansatz -- 8. Square and hexagonal united -- 9. Dependence on contrast parameter -- Reference
|
505 |
8 |
|
|a Chapter 8: Effective Conductivity of 3D regular composites 1. Modified Dirichlet problem. Finite number of balls -- 2. 3D periodic problems -- 3. Triply periodic functions -- 4. Functional equations on periodic functions -- 5. Analytical formulae for the effective conductivity. Discussion and overview of the known results. -- 6. Non-conducting inclusions embedded in an conducting matrix. FCC lattice -- 7. Non-conducting inclusions embedded in an conducting matrix. SC and BCC lattices -- Reference -- Chapter 9: Random 2D composites
|
520 |
|
|
|a Computational Analysis of Structured Media presents a systematical approach to analytical formulae for the effective properties of deterministic and random composites. Schwarz's method and functional equations yield for use in symbolic-numeric computations relevant to the effective properties. The work is primarily concerned with constructive topics of boundary value problems, complex analysis, and their applications to composites. Symbolic-numerical computations are widely used to deduce new formulae interesting for applied mathematicians and engineers. The main line of presentation is the investigation of two-phase 2D composites with non-overlapping inclusions randomly embedded in matrices.
|
650 |
|
0 |
|a Composite materials
|x Mathematical models.
|
650 |
|
6 |
|a Composites
|0 (CaQQLa)201-0025721
|x Mod�eles math�ematiques.
|0 (CaQQLa)201-0379082
|
650 |
|
7 |
|a TECHNOLOGY & ENGINEERING
|x Engineering (General)
|2 bisacsh
|
650 |
|
7 |
|a TECHNOLOGY & ENGINEERING
|x Reference.
|2 bisacsh
|
650 |
|
7 |
|a Composite materials
|x Mathematical models
|2 fast
|0 (OCoLC)fst00871716
|
720 |
|
|
|a Gluzman, Simon
|
720 |
|
|
|a Mityushev, Vladimir
|
720 |
|
|
|a Nawalaniec, Wojciech
|
776 |
0 |
8 |
|i Print version:
|z 9780128110461
|z 0128110465
|w (OCoLC)974698918
|
856 |
4 |
0 |
|u https://sciencedirect.uam.elogim.com/science/book/9780128110461
|z Texto completo
|