Cargando…

Modelling and simulation in the science of micro- and meso-porous materials /

Modelling and Simulation in the Science of Micro- and Meso-Porous Materials addresses significant developments in the field of micro- and meso-porous science. The book includes sections on Structure Modeling and Prediction, Synthesis, Nucleation and Growth, Sorption and Separation processes, Reactiv...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Catlow, C. R. A. (Charles Richard Arthur), 1947-, Van Speybroeck, Veronique, Santen, R. A. van (Rutger A.)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Amsterdam, Netherlands : Elsevier, [2018]
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Front Cover; Modelling and Simulation in the Science of Micro- and Meso-Porous Materials; Copyright Page; Contents; List of Contributors; Preface; Introduction; Microporous and Mesoporous Materials: Structures and Applications; Computational Modeling of Materials; Materials Modeling: Range and Scope; Materials Modeling Techniques; Interatomic Potential Methods; Electronic Structure Techniques; Implementation; Conclusions; References; 1 Structure Prediction of Microporous Materials; 1.1 Introduction; 1.2 Zeolite Framework Types; 1.3 Enumeration of Possible Framework Types; 1.4 Evaluation
  • 1.4.1 Geometry and Energy1.4.2 Flexibility; 1.4.3 Natural Building Units; 1.5 Understanding and Predicting Zeolite Synthesis Processes; 1.6 Forward Look; References; 2 Molecular Dynamics of Hydrocarbons in Zeolites: Historical Perspective and Current Developments; 2.1 Introduction: Early History; 2.2 Force Fields; 2.2.1 Nonbonding Force Fields for Zeolites; 2.2.2 Bonding Force Fields for Zeolites and Hydrocarbons; 2.2.3 Force Fields for Zeolite-Hydrocarbon Intermolecular Interactions; 2.3 Molecular Dynamics; 2.3.1 Method and Software; 2.3.2 Early Molecular Dynamics in Zeolites
  • 2.3.3 Why Molecular Dynamics in Zeolites?2.3.4 Molecular Dynamics Studies of Diffusion of Molecules in Zeolites; 2.3.5 Molecular Dynamics of Methane in Zeolites: A Case Study; 2.3.6 The Levitation Effect; 2.3.7 The Entropy of Molecules Diffusing in Zeolites; 2.3.8 Surface Effects in the Diffusion of Hydrocarbons in Zeolites; 2.4 Future Prospects; Acknowledgment; References; 3 Modeling of Diffusion in MOFs; 3.1 Introduction; 3.2 Important Aspects of Model Construction and Molecular Dynamics Simulations; 3.2.1 Atomistic Model of the Metal-Organic Framework
  • 3.2.2 Description of the Metal-Organic Framework/Guest Interactions3.2.3 Basic Principles of Equilibrium Molecular Dynamics Simulations; 3.3 Unusual Diffusion Phenomena of Molecules in Channel-Type Pores; 3.3.1 Super-Mobility of Small Molecules (H2 and CH4); 3.3.2 Diffusion of Linear Alkanes: The Blowgun Effect; 3.3.3 Single-File Diffusion of Neo-Pentane; 3.3.4 Corkscrew-Type Motion of Benzene; 3.4 Impact of the Metal-Organic Framework flexibility on the guest dynamics; 3.5 Gas Mixture Diffusion in MOFs-Towards the Evaluation of Their Diffusion Selectivity and Membrane Performances
  • 3.6 ConclusionAcknowledgments; References; 4 Molecular Modeling of Carbon Dioxide Adsorption in Metal-Organic Frameworks; 4.1 Introduction; 4.2 Molecular Modeling Methods; 4.2.1 Monte Carlo Simulations; 4.2.2 Force Fields; 4.2.2.1 Force Fields for Adsorbates and Adsorbents; 4.2.2.2 Force Fields for Open Metal Sites; 4.2.2.3 Force Fields for Flexible Metal-Organic Frameworks; 4.2.3 Atomic Partial Charge Calculations; 4.2.4 Comparison Between Modeling and Experiment; 4.3 Applications of Molecular Modeling for CO2 Separations in Metal-Organic Frameworks; 4.3.1 CO2/N2 Separation