Cargando…

Data literacy : how to make your experiments robust and reproducible /

Data Literacy: How to Make Your Experiments Robust and Reproducible provides an overview of basic concepts and skills in handling data, which are common to diverse areas of science. Readers will get a good grasp of the steps involved in carrying out a scientific study and will understand some of the...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Smalheiser, Neil R. (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Amsterdam : Academic Press, 2017.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 SCIDIR_on1004568849
003 OCoLC
005 20231120010217.0
006 m o d
007 cr mn|||||||||
008 170721t20172017ne ob 001 0 eng d
040 |a NLE  |b eng  |e rda  |e pn  |c NLE  |d YDX  |d N$T  |d IDEBK  |d EBLCP  |d OPELS  |d OCLCF  |d MERER  |d GZM  |d UPM  |d OCLCO  |d CSAIL  |d OCLCQ  |d OCL  |d OSU  |d D6H  |d GGVRL  |d CASUM  |d OCLCO  |d U3W  |d XQM  |d OCLCQ  |d MERUC  |d OCLCO  |d AU@  |d OCLCO  |d OCLCQ  |d WYU  |d OCLCO  |d LVT  |d OCLCA  |d TKN  |d UKMGB  |d OCLCQ  |d S2H  |d OCLCO  |d OCL  |d VT2  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO  |d COM  |d OCLCQ 
015 |a GBB7C8951  |2 bnb 
016 7 |a 018438883  |2 Uk 
019 |a 1003284628  |a 1003312028  |a 1003613412  |a 1066451605  |a 1229387610  |a 1235839661  |a 1311350467 
020 |a 9780128113073  |q (ePub ebook) 
020 |a 0128113073  |q (ePub ebook) 
020 |z 9780128113066  |q (pbk.) 
020 |z 0128113065  |q (pbk.) 
035 |a (OCoLC)1004568849  |z (OCoLC)1003284628  |z (OCoLC)1003312028  |z (OCoLC)1003613412  |z (OCoLC)1066451605  |z (OCoLC)1229387610  |z (OCoLC)1235839661  |z (OCoLC)1311350467 
050 4 |a Q180.A1  |b S63 2017eb 
072 7 |a REF  |x 018000  |2 bisacsh 
082 0 4 |a 006.312  |2 23 
100 1 |a Smalheiser, Neil R.,  |e author. 
245 1 0 |a Data literacy :  |b how to make your experiments robust and reproducible /  |c Neil Smalheiser, MD, PhD, Associate Professor in Psychiatry, Department of Psychiatry and Psychiatric Institute, University of Illinois School of Medicine, USA. 
264 1 |a Amsterdam :  |b Academic Press,  |c 2017. 
264 4 |c �2017 
300 |a 1 online resource (xvii, 261 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
520 |a Data Literacy: How to Make Your Experiments Robust and Reproducible provides an overview of basic concepts and skills in handling data, which are common to diverse areas of science. Readers will get a good grasp of the steps involved in carrying out a scientific study and will understand some of the factors that make a study robust and reproducible. The book covers several major modules such as experimental design, data cleansing and preparation, statistical analysis, data management, and reporting. No specialized knowledge of statistics or computer programming is needed to fully understand the concepts presented. This book is a valuable source for biomedical and health sciences graduate students and researchers, in general, who are interested in handling data to make their research reproducible and more efficient. Presents the content in an informal tone and with many examples taken from the daily routine at laboratories. Can be used for self-studying or as an optional book for more technical coursesBrings an interdisciplinary approach which may be applied across different areas of sciences. 
504 |a Includes bibliographical references and index. 
505 0 |a Reproducibility and robustness -- Choosing a research problem -- Basics of data and data distribution -- Experimental design: measures, validity, sampling, bias, randomization, power -- Experimental design: design strategies and controls -- Power estimation -- The data cleansing and analysis pipeline -- Topics to consider when analyzing data -- Null hypothesis statistical testing and the t-Test -- The "new statistics" and Bayesian inference -- ANOVA -- Non parametric tests -- Correlation and other concepts you should know -- How to record and report your experiments -- Data sharing and reuse -- The revolution in scientific publishing. 
588 0 |a Print version record. 
650 0 |a Data mining. 
650 0 |a Research  |x Data processing. 
650 0 |a Medicine  |x Research  |x Data processing. 
650 1 2 |a Data Mining  |0 (DNLM)D057225 
650 1 2 |a Research Design  |0 (DNLM)D012107 
650 2 2 |a Statistics 
650 6 |a Exploration de donn�ees (Informatique)  |0 (CaQQLa)201-0300292 
650 6 |a M�edecine  |0 (CaQQLa)201-0004698  |x Recherche  |0 (CaQQLa)201-0004698  |x Informatique.  |0 (CaQQLa)201-0380011 
650 7 |a research (function)  |2 aat  |0 (CStmoGRI)aat300054687 
650 7 |a REFERENCE  |x Questions & Answers.  |2 bisacsh 
650 7 |a Data mining.  |2 fast  |0 (OCoLC)fst00887946 
650 7 |a Medicine  |x Research  |x Data processing.  |2 fast  |0 (OCoLC)fst01015063 
650 7 |a Research  |x Data processing.  |2 fast  |0 (OCoLC)fst01095179 
655 0 |a Electronic books. 
655 2 |a Statistics  |0 (DNLM)D020500 
655 7 |a Statistics.  |2 fast  |0 (OCoLC)fst01423727 
655 7 |a Statistics.  |2 lcgft 
655 7 |a Statistiques.  |2 rvmgf  |0 (CaQQLa)RVMGF-000001223 
776 0 8 |i Print version:  |a Smalheiser, Neil R.  |t Data literacy.  |d Amsterdam : Academic Press, [2017]  |z 9780128113066  |w (OCoLC)974698661 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/book/9780128113066  |z Texto completo