Cargando…

Power Electronics Handbook.

Power Electronics Handbook, Fourth Edition, brings together over 100 years of combined experience in the specialist areas of power engineering to offer a fully revised and updated expert guide to total power solutions. Designed to provide the best technical and most commercially viable solutions ava...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Rashid, Muhammad H.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Saint Louis : Elsevier Science, 2017.
Edición:4th ed.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Front Cover; Power Electronics Handbook; Copyright; Table of Contents; Contributors; Chapter 1: Introduction; 1.1. Power Electronics Defined; 1.2. Key Characteristics; 1.2.1. The Efficiency Objective-The Switch; 1.2.2. The Reliability Objective-Simplicity and Integration; 1.3. Trends in Power Supplies; 1.4. Conversion Examples; 1.4.1. Single-Switch Circuits; 1.4.2. The Method of Energy Balance; 1.5. Tools for Analysis and Design; 1.5.1. The Switch Matrix; 1.5.2. Implications of Kirchhoff's Voltage and Current Laws; 1.5.3. Resolving the Hardware Problem-Semiconductor Devices.
  • 1.5.4. Resolving the Software Problem-Switching Functions1.5.5. Resolving the Interface Problem-Lossless Filter Design; 1.6. Sample Applications; 1.7. Summary; References; Section I: Power Electronic Devices; Chapter 2: Semiconductor Diodes and Transistors; 2.1. Semiconductor Diode; 2.1.1. Static Characteristics; 2.1.2. Dynamic Characteristics; 2.1.3. Common Types of Diodes; 2.1.4. Evaluating the Dynamic Characteristics of Real Diodes; 2.1.5. Series and Parallel Connection of Power Diodes; 2.1.6. Typical Application of Diodes; 2.1.6.1. Rectifiers; 2.1.6.2. Freewheeling.
  • 2.1.6.3. Voltage Multiplier2.1.7. PSPICE Model; 2.2. Power Bipolar Transistor; 2.2.1. Basic Structure and Operation; 2.2.2. Static Characteristics; 2.2.3. Safe Operation Area; 2.2.4. Switching Characteristics; 2.2.5. Transistor Base Driver Circuits; 2.2.6. BJT Applications; 2.2.7. PSPICE Model; 2.3. Power MOSFET; 2.3.1. Basic Structure; 2.3.2. Static Characteristics; 2.3.2.1. Ohmic Region; 2.3.2.2. Cut-off Region; 2.3.2.3. Active Region; 2.3.3. Switching Characteristics; 2.3.3.1. Turn-on Analysis; 2.3.3.2. Turn-off Analysis; 2.3.4. Safe Operation Area; 2.3.5. MOSFET Applications.
  • 2.3.6. PSPICE Model2.4. Insulated Gate Bipolar Transistor; 2.4.1. Basic Structure; 2.4.2. Static Characteristics; 2.4.3. Switching Characteristics; 2.4.3.1. Turn-on Analysis; 2.4.3.2. Turn-off Analysis; 2.4.4. IGBT Applications; 2.4.5. PSPICE Model; 2.5. Swtiching evaluation of a Real MOSFET; 2.5.1. Results for Sw1 ON and Sw2 OFF and Rpot at the Maximum Resistance; 2.5.2. Results for Sw1 ON and Sw2 OFF and Rpot at the Minimum Resistance; 2.5.3. Results for Sw1 and Sw2 ON and Rpot at the Maximum Resistance; 2.5.4. Results for Sw1 and Sw2 OFF and Rpot at the Maximum Resistance.
  • 2.6. Heatsink Thermal Design for Power Semiconductors2.6.1. Heatsink Design; 2.7. Transistor Selection Criteria; References; Chapter 3: Thyristors; 3.1. Introduction; 3.2. Basic Structure and Operation; 3.3. Static Characteristics; 3.3.1. Current-Voltage Curves for Thyristors; 3.3.2. Edge and Surface Terminations; 3.3.3. Packaging; 3.4. Dynamic Switching Characteristics; 3.4.1. Cathode Shorts; 3.4.2. Anode Shorts; 3.4.3. Amplifying Gate; 3.4.4. Temperature Dependencies; 3.5. Thyristor Parameters; 3.6. Types of Thyristors; 3.6.1. SCRs and GTOs; 3.6.1.1. On-State Characteristics.