Cargando…

Modeling, Solving and Application for Topology Optimization of Continuum Structures.

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Sui, Yunkang
Otros Autores: Peng, Xirong
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Saint Louis : Elsevier Science, 2017.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Mu 4500
001 SCIDIR_on1003259862
003 OCoLC
005 20231120010216.0
006 m o d
007 cr |||||||||||
008 170909s2017 mou ob 001 0 eng d
040 |a EBLCP  |b eng  |e pn  |c EBLCP  |d YDX  |d N$T  |d OPELS  |d IDEBK  |d OCLCF  |d MERER  |d GZM  |d OCLCQ  |d D6H  |d U3W  |d STF  |d OCLCQ  |d S2H  |d OCLCO  |d OCLCQ  |d OCLCO  |d K6U  |d OCLCQ  |d SFB  |d OCLCQ  |d OCLCO 
019 |a 1002847897  |a 1002895482  |a 1012317312  |a 1311349013 
020 |a 9780128126561 
020 |a 0128126566 
020 |z 9780128126554 
020 |z 0128126558 
035 |a (OCoLC)1003259862  |z (OCoLC)1002847897  |z (OCoLC)1002895482  |z (OCoLC)1012317312  |z (OCoLC)1311349013 
050 4 |a TA646 
072 7 |a TEC  |x 009020  |2 bisacsh 
082 0 4 |a 624.1/7015118  |2 23 
100 1 |a Sui, Yunkang. 
245 1 0 |a Modeling, Solving and Application for Topology Optimization of Continuum Structures. 
264 1 |a Saint Louis :  |b Elsevier Science,  |c 2017. 
300 |a 1 online resource (395 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
588 0 |a Print version record. 
505 0 |a Front Cover; Modeling, Solving and Application for Topology Optimization of Continuum Structures; Copyright Page; Dedication; Contents; Preface; Acknowledgment; 1 Exordium; 1.1 Research History on Structural Optimization Design; 1.1.1 Classification and Hierarchy for Structural Optimization Design; 1.1.2 Development of Structural Optimization; 1.2 Research Progress in Topology Optimization of Continuum Structures; 1.2.1 Numerical Methods Solving Problems of Topology Optimization of Continuum Structures; 1.2.2 Solution Algorithms for Topology Optimization of Continuum Structures. 
505 8 |a 1.3 Concepts and Algorithms on Mathematical Programming1.3.1 Three Essential Factors of Structural Optimization Design; 1.3.2 Models for Mathematical Programming; 1.3.3 Linear Programming; 1.3.4 Quadratic Programming; 1.3.5 Kuhn-Tucker Conditions and Duality Theory; 1.3.6 K-S Function Method; 1.3.7 Theory of Generalized Geometric Programming; 1.3.8 Higher Order Expansion Under Function Transformations and Monomial Higher Order Condensation Formula; 2 Foundation of the ICM (independent, continuous and mapping) method; 2.1 Difficulties in Conventional Topology Optimization and Solution. 
505 8 |a 2.2 Step Function and Hurdle Function-Bridge of Constructing Relationship Between Discrete Topology Variables and Element P ... 2.3 Fundamental Breakthrough-Polish Function Approaching to Step Function and Filter Function Approaching to Hurdle Function; 2.3.1 Polish Function; 2.3.2 Filter Function; 2.3.3 Filter Function Makes Solution of Topology Optimization Operable; 2.3.4 Relationship of Four Functions; 2.4 ICM Method and Its Application; 2.4.1 Whole Process of Identification Quantity of Element and Its Mapping Identification; 2.4.2 Several Typical Polish Functions and Filter Functions. 
505 8 |a 2.4.3 Identification Speed of Different Functions and Determination of Their Parameters2.4.3.1 Criteria method; 2.4.3.2 Trial and error method; 2.4.3.3 Constructing method; 2.4.4 Transformation From the Parameter of the Power Function to the Parameter of the Logarithmic Function for the Filter F ... ; 2.4.5 Establishment of the Structural Topology Optimization Model Based on the ICM Method; 2.4.6 Inversion of Mapping; 2.5 Exploration of Performance of Polish Function and Filter Function; 2.5.1 Classification of Polish Functions and Filter Functions; 2.5.2 Type Judgment Theorem. 
505 8 |a 2.5.3 Theorem of Corresponding Relations of Polish Functions and Filter Functions2.6 Exploration of Filter Function With High Precision; 2.6.1 Application Criterion of Filter Function With High Precision; 2.6.2 Method on Constructing Fast Filter Function by Left Polish Function With High Precision; 2.6.3 Selection of Parameter for Exponent Type of Fast Filter Function; 2.7 Breakthrough on Basic Conceptions in ICM Method; 3 Stress-constrained topology optimization for continuum structures; 3.1 ICM Method With Zero-Order Approximation Stresses and Solution of Model. 
500 |a 3.1.1 Topology Optimization Model With Zero-Order Approximation Stress Constraints for Continuum Structures. 
504 |a Includes bibliographical references and index. 
650 0 |a Structural analysis (Engineering)  |x Mathematical models. 
650 0 |a Mathematical optimization. 
650 0 |a Continuum mechanics. 
650 6 |a Th�eorie des constructions  |0 (CaQQLa)201-0015598  |x Mod�eles math�ematiques.  |0 (CaQQLa)201-0379082 
650 6 |a Optimisation math�ematique.  |0 (CaQQLa)201-0007680 
650 6 |a M�ecanique des milieux continus.  |0 (CaQQLa)201-0022033 
650 7 |a TECHNOLOGY & ENGINEERING  |x Civil  |x General.  |2 bisacsh 
650 7 |a Continuum mechanics  |2 fast  |0 (OCoLC)fst00876787 
650 7 |a Mathematical optimization  |2 fast  |0 (OCoLC)fst01012099 
650 7 |a Structural analysis (Engineering)  |x Mathematical models  |2 fast  |0 (OCoLC)fst01135610 
700 1 |a Peng, Xirong. 
776 0 8 |i Print version:  |a Sui, Yunkang.  |t Modeling, Solving and Application for Topology Optimization of Continuum Structures: ICM Method Based on Step Function.  |d Saint Louis : Elsevier Science, �2017  |z 9780128126554 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/book/9780128126554  |z Texto completo