|
|
|
|
LEADER |
00000cam a2200000Mu 4500 |
001 |
SCIDIR_on1003259862 |
003 |
OCoLC |
005 |
20231120010216.0 |
006 |
m o d |
007 |
cr ||||||||||| |
008 |
170909s2017 mou ob 001 0 eng d |
040 |
|
|
|a EBLCP
|b eng
|e pn
|c EBLCP
|d YDX
|d N$T
|d OPELS
|d IDEBK
|d OCLCF
|d MERER
|d GZM
|d OCLCQ
|d D6H
|d U3W
|d STF
|d OCLCQ
|d S2H
|d OCLCO
|d OCLCQ
|d OCLCO
|d K6U
|d OCLCQ
|d SFB
|d OCLCQ
|d OCLCO
|
019 |
|
|
|a 1002847897
|a 1002895482
|a 1012317312
|a 1311349013
|
020 |
|
|
|a 9780128126561
|
020 |
|
|
|a 0128126566
|
020 |
|
|
|z 9780128126554
|
020 |
|
|
|z 0128126558
|
035 |
|
|
|a (OCoLC)1003259862
|z (OCoLC)1002847897
|z (OCoLC)1002895482
|z (OCoLC)1012317312
|z (OCoLC)1311349013
|
050 |
|
4 |
|a TA646
|
072 |
|
7 |
|a TEC
|x 009020
|2 bisacsh
|
082 |
0 |
4 |
|a 624.1/7015118
|2 23
|
100 |
1 |
|
|a Sui, Yunkang.
|
245 |
1 |
0 |
|a Modeling, Solving and Application for Topology Optimization of Continuum Structures.
|
264 |
|
1 |
|a Saint Louis :
|b Elsevier Science,
|c 2017.
|
300 |
|
|
|a 1 online resource (395 pages)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
588 |
0 |
|
|a Print version record.
|
505 |
0 |
|
|a Front Cover; Modeling, Solving and Application for Topology Optimization of Continuum Structures; Copyright Page; Dedication; Contents; Preface; Acknowledgment; 1 Exordium; 1.1 Research History on Structural Optimization Design; 1.1.1 Classification and Hierarchy for Structural Optimization Design; 1.1.2 Development of Structural Optimization; 1.2 Research Progress in Topology Optimization of Continuum Structures; 1.2.1 Numerical Methods Solving Problems of Topology Optimization of Continuum Structures; 1.2.2 Solution Algorithms for Topology Optimization of Continuum Structures.
|
505 |
8 |
|
|a 1.3 Concepts and Algorithms on Mathematical Programming1.3.1 Three Essential Factors of Structural Optimization Design; 1.3.2 Models for Mathematical Programming; 1.3.3 Linear Programming; 1.3.4 Quadratic Programming; 1.3.5 Kuhn-Tucker Conditions and Duality Theory; 1.3.6 K-S Function Method; 1.3.7 Theory of Generalized Geometric Programming; 1.3.8 Higher Order Expansion Under Function Transformations and Monomial Higher Order Condensation Formula; 2 Foundation of the ICM (independent, continuous and mapping) method; 2.1 Difficulties in Conventional Topology Optimization and Solution.
|
505 |
8 |
|
|a 2.2 Step Function and Hurdle Function-Bridge of Constructing Relationship Between Discrete Topology Variables and Element P ... 2.3 Fundamental Breakthrough-Polish Function Approaching to Step Function and Filter Function Approaching to Hurdle Function; 2.3.1 Polish Function; 2.3.2 Filter Function; 2.3.3 Filter Function Makes Solution of Topology Optimization Operable; 2.3.4 Relationship of Four Functions; 2.4 ICM Method and Its Application; 2.4.1 Whole Process of Identification Quantity of Element and Its Mapping Identification; 2.4.2 Several Typical Polish Functions and Filter Functions.
|
505 |
8 |
|
|a 2.4.3 Identification Speed of Different Functions and Determination of Their Parameters2.4.3.1 Criteria method; 2.4.3.2 Trial and error method; 2.4.3.3 Constructing method; 2.4.4 Transformation From the Parameter of the Power Function to the Parameter of the Logarithmic Function for the Filter F ... ; 2.4.5 Establishment of the Structural Topology Optimization Model Based on the ICM Method; 2.4.6 Inversion of Mapping; 2.5 Exploration of Performance of Polish Function and Filter Function; 2.5.1 Classification of Polish Functions and Filter Functions; 2.5.2 Type Judgment Theorem.
|
505 |
8 |
|
|a 2.5.3 Theorem of Corresponding Relations of Polish Functions and Filter Functions2.6 Exploration of Filter Function With High Precision; 2.6.1 Application Criterion of Filter Function With High Precision; 2.6.2 Method on Constructing Fast Filter Function by Left Polish Function With High Precision; 2.6.3 Selection of Parameter for Exponent Type of Fast Filter Function; 2.7 Breakthrough on Basic Conceptions in ICM Method; 3 Stress-constrained topology optimization for continuum structures; 3.1 ICM Method With Zero-Order Approximation Stresses and Solution of Model.
|
500 |
|
|
|a 3.1.1 Topology Optimization Model With Zero-Order Approximation Stress Constraints for Continuum Structures.
|
504 |
|
|
|a Includes bibliographical references and index.
|
650 |
|
0 |
|a Structural analysis (Engineering)
|x Mathematical models.
|
650 |
|
0 |
|a Mathematical optimization.
|
650 |
|
0 |
|a Continuum mechanics.
|
650 |
|
6 |
|a Th�eorie des constructions
|0 (CaQQLa)201-0015598
|x Mod�eles math�ematiques.
|0 (CaQQLa)201-0379082
|
650 |
|
6 |
|a Optimisation math�ematique.
|0 (CaQQLa)201-0007680
|
650 |
|
6 |
|a M�ecanique des milieux continus.
|0 (CaQQLa)201-0022033
|
650 |
|
7 |
|a TECHNOLOGY & ENGINEERING
|x Civil
|x General.
|2 bisacsh
|
650 |
|
7 |
|a Continuum mechanics
|2 fast
|0 (OCoLC)fst00876787
|
650 |
|
7 |
|a Mathematical optimization
|2 fast
|0 (OCoLC)fst01012099
|
650 |
|
7 |
|a Structural analysis (Engineering)
|x Mathematical models
|2 fast
|0 (OCoLC)fst01135610
|
700 |
1 |
|
|a Peng, Xirong.
|
776 |
0 |
8 |
|i Print version:
|a Sui, Yunkang.
|t Modeling, Solving and Application for Topology Optimization of Continuum Structures: ICM Method Based on Step Function.
|d Saint Louis : Elsevier Science, �2017
|z 9780128126554
|
856 |
4 |
0 |
|u https://sciencedirect.uam.elogim.com/science/book/9780128126554
|z Texto completo
|